Hao Guan, Waheed Ahmad Khan, Shazia Saleem, Waqar Arif, J. Shafi, Aysha Khan
{"title":"Some Connectivity Parameters of Interval-Valued Intuitionistic Fuzzy Graphs with Applications","authors":"Hao Guan, Waheed Ahmad Khan, Shazia Saleem, Waqar Arif, J. Shafi, Aysha Khan","doi":"10.3390/axioms12121120","DOIUrl":null,"url":null,"abstract":"Connectivity in graphs is useful in describing different types of communication systems like neural networks, computer networks, etc. In the design of any network, it is essential to evaluate the connections based on their strengths. In this manuscript, we comprehensively describe various connectivity parameters related to interval-valued intuitionistic fuzzy graphs (IVIFGs). These are the generalizations of the parameters defined for fuzzy graphs, interval-valued fuzzy graphs, and intuitionistic fuzzy graphs. First, we introduce interval-valued intuitionistic fuzzy bridges (IVIF bridges) and interval-valued intuitionistic fuzzy cut-nodes (IVIF cut-nodes). We discuss the many characteristics of these terms as well as establish the necessary and sufficient conditions for an arc to become an IVIF-bridge and a vertex to be an IVIF-cutnode. Furthermore, we initiate the concepts of interval-valued intuitionistic fuzzy cycles (IVIFCs) and interval-valued intuitionistic fuzzy trees (IVIFTs) and explore few relationships among them. In addition, we introduce the notions of fuzzy blocks and fuzzy block graphs and extend these terms as interval-valued fuzzy blocks (IVF-blocks) and interval-valued intuitionistic fuzzy block graphs (IVIF-block graphs). Finally, we provide the application of interval-valued intuitionistic fuzzy trees (IVIFTs) in a road transport network.","PeriodicalId":53148,"journal":{"name":"Axioms","volume":"9 2","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Axioms","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/axioms12121120","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Connectivity in graphs is useful in describing different types of communication systems like neural networks, computer networks, etc. In the design of any network, it is essential to evaluate the connections based on their strengths. In this manuscript, we comprehensively describe various connectivity parameters related to interval-valued intuitionistic fuzzy graphs (IVIFGs). These are the generalizations of the parameters defined for fuzzy graphs, interval-valued fuzzy graphs, and intuitionistic fuzzy graphs. First, we introduce interval-valued intuitionistic fuzzy bridges (IVIF bridges) and interval-valued intuitionistic fuzzy cut-nodes (IVIF cut-nodes). We discuss the many characteristics of these terms as well as establish the necessary and sufficient conditions for an arc to become an IVIF-bridge and a vertex to be an IVIF-cutnode. Furthermore, we initiate the concepts of interval-valued intuitionistic fuzzy cycles (IVIFCs) and interval-valued intuitionistic fuzzy trees (IVIFTs) and explore few relationships among them. In addition, we introduce the notions of fuzzy blocks and fuzzy block graphs and extend these terms as interval-valued fuzzy blocks (IVF-blocks) and interval-valued intuitionistic fuzzy block graphs (IVIF-block graphs). Finally, we provide the application of interval-valued intuitionistic fuzzy trees (IVIFTs) in a road transport network.
期刊介绍:
Axiomatic theories in physics and in mathematics (for example, axiomatic theory of thermodynamics, and also either the axiomatic classical set theory or the axiomatic fuzzy set theory) Axiomatization, axiomatic methods, theorems, mathematical proofs Algebraic structures, field theory, group theory, topology, vector spaces Mathematical analysis Mathematical physics Mathematical logic, and non-classical logics, such as fuzzy logic, modal logic, non-monotonic logic. etc. Classical and fuzzy set theories Number theory Systems theory Classical measures, fuzzy measures, representation theory, and probability theory Graph theory Information theory Entropy Symmetry Differential equations and dynamical systems Relativity and quantum theories Mathematical chemistry Automata theory Mathematical problems of artificial intelligence Complex networks from a mathematical viewpoint Reasoning under uncertainty Interdisciplinary applications of mathematical theory.