Enhancing data security of cardiac patients in IoMT with Twin-Shield Encryption

Smiley Gandhi, T. Poongodi, K. S. Kumar
{"title":"Enhancing data security of cardiac patients in IoMT with Twin-Shield Encryption","authors":"Smiley Gandhi, T. Poongodi, K. S. Kumar","doi":"10.32629/jai.v7i2.1322","DOIUrl":null,"url":null,"abstract":"Cardiac disease kills most people worldwide. Predicting and monitoring cardiac problems early improves disease treatment and patient outcomes. The Internet of Medical Things (IoMT) can monitor and analyze physiological data in real-time, changing healthcare. Many researchers find data generation problematic. Encryption is needed to secure a massive amount of data. This paper presents a Twin-Shield Encryption (TSE) that combines Elliptic Curve Cryptography (HECC) and Rivest-Shamir-Adleman (RSA) IoMT assistance for heart illness patient monitoring. Cleveland cardiac dataset from the University of California Irvine (UCI) research repository is collected. It has 12 qualities and 303 occurrences. The data is pre-processed using normalization; feature extracted using Principal Component Analysis (PCA), and securely transmitted to the cloud infrastructure for further processing and analysis. TSE encrypts patient data to prevent unauthorized access and maintain data integrity during transmission and storage. The framework could enhance cardiac ailment diagnosis, treatment, and management by giving clinicians and patients individualized care based on physiological profiles.","PeriodicalId":307060,"journal":{"name":"Journal of Autonomous Intelligence","volume":"19 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Autonomous Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32629/jai.v7i2.1322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cardiac disease kills most people worldwide. Predicting and monitoring cardiac problems early improves disease treatment and patient outcomes. The Internet of Medical Things (IoMT) can monitor and analyze physiological data in real-time, changing healthcare. Many researchers find data generation problematic. Encryption is needed to secure a massive amount of data. This paper presents a Twin-Shield Encryption (TSE) that combines Elliptic Curve Cryptography (HECC) and Rivest-Shamir-Adleman (RSA) IoMT assistance for heart illness patient monitoring. Cleveland cardiac dataset from the University of California Irvine (UCI) research repository is collected. It has 12 qualities and 303 occurrences. The data is pre-processed using normalization; feature extracted using Principal Component Analysis (PCA), and securely transmitted to the cloud infrastructure for further processing and analysis. TSE encrypts patient data to prevent unauthorized access and maintain data integrity during transmission and storage. The framework could enhance cardiac ailment diagnosis, treatment, and management by giving clinicians and patients individualized care based on physiological profiles.
利用双盾加密技术加强物联网医疗中心脏病患者的数据安全
心脏病是全球致死率最高的疾病。及早预测和监测心脏问题可改善疾病治疗和患者预后。医疗物联网(IoMT)可以实时监测和分析生理数据,从而改变医疗保健。许多研究人员发现数据生成存在问题。要确保海量数据的安全,就需要加密。本文介绍了一种双盾加密(TSE)技术,它结合了椭圆曲线加密(HECC)和里维斯特-沙米尔-阿德尔曼(RSA)物联网技术,可用于心脏病患者监测。本文收集了加州大学欧文分校(UCI)研究资料库中的克利夫兰心脏数据集。该数据集有 12 种质量和 303 次出现。数据经过规范化预处理,使用主成分分析(PCA)提取特征,并安全地传输到云基础设施进行进一步处理和分析。TSE 对患者数据进行加密,以防止未经授权的访问,并在传输和存储过程中保持数据的完整性。该框架可根据生理特征为临床医生和患者提供个性化护理,从而加强心脏疾病的诊断、治疗和管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信