Rosa Maza-Quiroga, Karl Thurnhofer-Hemsi, Domingo López-Rodríguez, Ezequiel López-Rubio
{"title":"Regression of the Rician Noise Level in 3D Magnetic Resonance Images from the Distribution of the First Significant Digit","authors":"Rosa Maza-Quiroga, Karl Thurnhofer-Hemsi, Domingo López-Rodríguez, Ezequiel López-Rubio","doi":"10.3390/axioms12121117","DOIUrl":null,"url":null,"abstract":"This paper investigates the distribution characteristics of Fourier, discrete cosine, and discrete sine transform coefficients in T1 MRI images. This paper reveals their adherence to Benford’s law, characterized by a logarithmic distribution of first digits. The impact of Rician noise on the first digit distribution is examined, which causes deviations from the ideal distribution. A novel methodology is proposed for noise level estimation, employing metrics such as the Bhattacharyya distance, Kullback–Leibler divergence, total variation distance, Hellinger distance, and Jensen–Shannon divergence. Supervised learning techniques utilize these metrics as regressors. Evaluations on MRI scans from several datasets coming from a wide range of different acquisition devices of 1.5 T and 3 T, comprising hundreds of patients, validate the adherence of noiseless T1 MRI frequency domain coefficients to Benford’s law. Through rigorous experimentation, our methodology has demonstrated competitiveness with established noise estimation techniques, even surpassing them in numerous conducted experiments. This research empirically supports the application of Benford’s law in transforms, offering a reliable approach for noise estimation in denoising algorithms and advancing image quality assessment.","PeriodicalId":53148,"journal":{"name":"Axioms","volume":"28 11","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Axioms","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/axioms12121117","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigates the distribution characteristics of Fourier, discrete cosine, and discrete sine transform coefficients in T1 MRI images. This paper reveals their adherence to Benford’s law, characterized by a logarithmic distribution of first digits. The impact of Rician noise on the first digit distribution is examined, which causes deviations from the ideal distribution. A novel methodology is proposed for noise level estimation, employing metrics such as the Bhattacharyya distance, Kullback–Leibler divergence, total variation distance, Hellinger distance, and Jensen–Shannon divergence. Supervised learning techniques utilize these metrics as regressors. Evaluations on MRI scans from several datasets coming from a wide range of different acquisition devices of 1.5 T and 3 T, comprising hundreds of patients, validate the adherence of noiseless T1 MRI frequency domain coefficients to Benford’s law. Through rigorous experimentation, our methodology has demonstrated competitiveness with established noise estimation techniques, even surpassing them in numerous conducted experiments. This research empirically supports the application of Benford’s law in transforms, offering a reliable approach for noise estimation in denoising algorithms and advancing image quality assessment.
期刊介绍:
Axiomatic theories in physics and in mathematics (for example, axiomatic theory of thermodynamics, and also either the axiomatic classical set theory or the axiomatic fuzzy set theory) Axiomatization, axiomatic methods, theorems, mathematical proofs Algebraic structures, field theory, group theory, topology, vector spaces Mathematical analysis Mathematical physics Mathematical logic, and non-classical logics, such as fuzzy logic, modal logic, non-monotonic logic. etc. Classical and fuzzy set theories Number theory Systems theory Classical measures, fuzzy measures, representation theory, and probability theory Graph theory Information theory Entropy Symmetry Differential equations and dynamical systems Relativity and quantum theories Mathematical chemistry Automata theory Mathematical problems of artificial intelligence Complex networks from a mathematical viewpoint Reasoning under uncertainty Interdisciplinary applications of mathematical theory.