Yang Zou, Shaoqi Shi, Zefeng Yang, Teng Xu, Yongqi Liang, Qiang Yu, Yuchuan Cheng, Gaojie Xu, Zhixiang Li, Fei Long
{"title":"Multi-objective optimization of key process parameters in laser cladding Stellite12 cobalt-based alloy powder","authors":"Yang Zou, Shaoqi Shi, Zefeng Yang, Teng Xu, Yongqi Liang, Qiang Yu, Yuchuan Cheng, Gaojie Xu, Zhixiang Li, Fei Long","doi":"10.2351/7.0001163","DOIUrl":null,"url":null,"abstract":"Laser cladding (LC) process parameters have a substantial influence on coating morphology and mechanical characteristics; it is necessary to optimize key parameters for laser processing. In this study, Stellite12 cobalt-based alloy powder with excellent corrosion and wear resistance was selected as the cladding material. The multi-objective optimization model of the LC process was established by response surface methodology, laser power, scanning speed, and powder feeding rate as input factors, and the target response variables involve dilution, aspect ratio, and microhardness of the single-track cladding. Combined with variance analysis (ANOVA), the multi-objective optimization of laser power, scanning speed, and powder feeding rate was conducted. A single-track cladding layer with a dilution of 18.29%, an aspect ratio of 3.88, and a microhardness of 634.67 HV0.2 was obtained using the optimized process parameters. Errors between the predicted and actual values of single-track cladding dilution, aspect ratio, and microhardness were less than 8%, which verified the accuracy of the established model.","PeriodicalId":50168,"journal":{"name":"Journal of Laser Applications","volume":"10 11","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Laser Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2351/7.0001163","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Laser cladding (LC) process parameters have a substantial influence on coating morphology and mechanical characteristics; it is necessary to optimize key parameters for laser processing. In this study, Stellite12 cobalt-based alloy powder with excellent corrosion and wear resistance was selected as the cladding material. The multi-objective optimization model of the LC process was established by response surface methodology, laser power, scanning speed, and powder feeding rate as input factors, and the target response variables involve dilution, aspect ratio, and microhardness of the single-track cladding. Combined with variance analysis (ANOVA), the multi-objective optimization of laser power, scanning speed, and powder feeding rate was conducted. A single-track cladding layer with a dilution of 18.29%, an aspect ratio of 3.88, and a microhardness of 634.67 HV0.2 was obtained using the optimized process parameters. Errors between the predicted and actual values of single-track cladding dilution, aspect ratio, and microhardness were less than 8%, which verified the accuracy of the established model.
期刊介绍:
The Journal of Laser Applications (JLA) is the scientific platform of the Laser Institute of America (LIA) and is published in cooperation with AIP Publishing. The high-quality articles cover a broad range from fundamental and applied research and development to industrial applications. Therefore, JLA is a reflection of the state-of-R&D in photonic production, sensing and measurement as well as Laser safety.
The following international and well known first-class scientists serve as allocated Editors in 9 new categories:
High Precision Materials Processing with Ultrafast Lasers
Laser Additive Manufacturing
High Power Materials Processing with High Brightness Lasers
Emerging Applications of Laser Technologies in High-performance/Multi-function Materials and Structures
Surface Modification
Lasers in Nanomanufacturing / Nanophotonics & Thin Film Technology
Spectroscopy / Imaging / Diagnostics / Measurements
Laser Systems and Markets
Medical Applications & Safety
Thermal Transportation
Nanomaterials and Nanoprocessing
Laser applications in Microelectronics.