{"title":"NeuSyRE: Neuro-symbolic visual understanding and reasoning framework based on scene graph enrichment","authors":"M. J. Khan, John G. Breslin, Edward Curry","doi":"10.3233/sw-233510","DOIUrl":null,"url":null,"abstract":"Exploring the potential of neuro-symbolic hybrid approaches offers promising avenues for seamless high-level understanding and reasoning about visual scenes. Scene Graph Generation (SGG) is a symbolic image representation approach based on deep neural networks (DNN) that involves predicting objects, their attributes, and pairwise visual relationships in images to create scene graphs, which are utilized in downstream visual reasoning. The crowdsourced training datasets used in SGG are highly imbalanced, which results in biased SGG results. The vast number of possible triplets makes it challenging to collect sufficient training samples for every visual concept or relationship. To address these challenges, we propose augmenting the typical data-driven SGG approach with common sense knowledge to enhance the expressiveness and autonomy of visual understanding and reasoning. We present a loosely-coupled neuro-symbolic visual understanding and reasoning framework that employs a DNN-based pipeline for object detection and multi-modal pairwise relationship prediction for scene graph generation and leverages common sense knowledge in heterogenous knowledge graphs to enrich scene graphs for improved downstream reasoning. A comprehensive evaluation is performed on multiple standard datasets, including Visual Genome and Microsoft COCO, in which the proposed approach outperformed the state-of-the-art SGG methods in terms of relationship recall scores, i.e. Recall@K and mean Recall@K, as well as the state-of-the-art scene graph-based image captioning methods in terms of SPICE and CIDEr scores with comparable BLEU, ROGUE and METEOR scores. As a result of enrichment, the qualitative results showed improved expressiveness of scene graphs, resulting in more intuitive and meaningful caption generation using scene graphs. Our results validate the effectiveness of enriching scene graphs with common sense knowledge using heterogeneous knowledge graphs. This work provides a baseline for future research in knowledge-enhanced visual understanding and reasoning. The source code is available at https://github.com/jaleedkhan/neusire.","PeriodicalId":48694,"journal":{"name":"Semantic Web","volume":"68 11","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semantic Web","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/sw-233510","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Exploring the potential of neuro-symbolic hybrid approaches offers promising avenues for seamless high-level understanding and reasoning about visual scenes. Scene Graph Generation (SGG) is a symbolic image representation approach based on deep neural networks (DNN) that involves predicting objects, their attributes, and pairwise visual relationships in images to create scene graphs, which are utilized in downstream visual reasoning. The crowdsourced training datasets used in SGG are highly imbalanced, which results in biased SGG results. The vast number of possible triplets makes it challenging to collect sufficient training samples for every visual concept or relationship. To address these challenges, we propose augmenting the typical data-driven SGG approach with common sense knowledge to enhance the expressiveness and autonomy of visual understanding and reasoning. We present a loosely-coupled neuro-symbolic visual understanding and reasoning framework that employs a DNN-based pipeline for object detection and multi-modal pairwise relationship prediction for scene graph generation and leverages common sense knowledge in heterogenous knowledge graphs to enrich scene graphs for improved downstream reasoning. A comprehensive evaluation is performed on multiple standard datasets, including Visual Genome and Microsoft COCO, in which the proposed approach outperformed the state-of-the-art SGG methods in terms of relationship recall scores, i.e. Recall@K and mean Recall@K, as well as the state-of-the-art scene graph-based image captioning methods in terms of SPICE and CIDEr scores with comparable BLEU, ROGUE and METEOR scores. As a result of enrichment, the qualitative results showed improved expressiveness of scene graphs, resulting in more intuitive and meaningful caption generation using scene graphs. Our results validate the effectiveness of enriching scene graphs with common sense knowledge using heterogeneous knowledge graphs. This work provides a baseline for future research in knowledge-enhanced visual understanding and reasoning. The source code is available at https://github.com/jaleedkhan/neusire.
Semantic WebCOMPUTER SCIENCE, ARTIFICIAL INTELLIGENCEC-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
8.30
自引率
6.70%
发文量
68
期刊介绍:
The journal Semantic Web – Interoperability, Usability, Applicability brings together researchers from various fields which share the vision and need for more effective and meaningful ways to share information across agents and services on the future internet and elsewhere. As such, Semantic Web technologies shall support the seamless integration of data, on-the-fly composition and interoperation of Web services, as well as more intuitive search engines. The semantics – or meaning – of information, however, cannot be defined without a context, which makes personalization, trust, and provenance core topics for Semantic Web research. New retrieval paradigms, user interfaces, and visualization techniques have to unleash the power of the Semantic Web and at the same time hide its complexity from the user. Based on this vision, the journal welcomes contributions ranging from theoretical and foundational research over methods and tools to descriptions of concrete ontologies and applications in all areas. We especially welcome papers which add a social, spatial, and temporal dimension to Semantic Web research, as well as application-oriented papers making use of formal semantics.