Jocivania Pinheiro, R. Santiago, Benjamín Bedregal, F. Bergamaschi
{"title":"Developing Constrained Interval Operators for Fuzzy Logic with Interval Values","authors":"Jocivania Pinheiro, R. Santiago, Benjamín Bedregal, F. Bergamaschi","doi":"10.3390/axioms12121115","DOIUrl":null,"url":null,"abstract":"A well-known problem in the interval analysis literature is the overestimation and loss of information. In this article, we define new interval operators, called constrained interval operators, that preserve information and mitigate overestimation. These operators are investigated in terms of correction, algebraic properties, and orders. It is shown that a large part of the properties studied is preserved by this operator, while others remain preserved with the condition of continuity, as is the case of the exchange principle. In addition, a comparative study is carried out between this operator g¨ and the best interval representation: g^. Although g¨⊆g^ and g¨ do not preserve the Moore correction, we do not have a loss of relevant information since everything that is lost is irrelevant, mitigating the overestimation.","PeriodicalId":53148,"journal":{"name":"Axioms","volume":"85 2","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Axioms","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/axioms12121115","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
A well-known problem in the interval analysis literature is the overestimation and loss of information. In this article, we define new interval operators, called constrained interval operators, that preserve information and mitigate overestimation. These operators are investigated in terms of correction, algebraic properties, and orders. It is shown that a large part of the properties studied is preserved by this operator, while others remain preserved with the condition of continuity, as is the case of the exchange principle. In addition, a comparative study is carried out between this operator g¨ and the best interval representation: g^. Although g¨⊆g^ and g¨ do not preserve the Moore correction, we do not have a loss of relevant information since everything that is lost is irrelevant, mitigating the overestimation.
期刊介绍:
Axiomatic theories in physics and in mathematics (for example, axiomatic theory of thermodynamics, and also either the axiomatic classical set theory or the axiomatic fuzzy set theory) Axiomatization, axiomatic methods, theorems, mathematical proofs Algebraic structures, field theory, group theory, topology, vector spaces Mathematical analysis Mathematical physics Mathematical logic, and non-classical logics, such as fuzzy logic, modal logic, non-monotonic logic. etc. Classical and fuzzy set theories Number theory Systems theory Classical measures, fuzzy measures, representation theory, and probability theory Graph theory Information theory Entropy Symmetry Differential equations and dynamical systems Relativity and quantum theories Mathematical chemistry Automata theory Mathematical problems of artificial intelligence Complex networks from a mathematical viewpoint Reasoning under uncertainty Interdisciplinary applications of mathematical theory.