Estimates for maximal functions associated to hypersurfaces in $\mathbbm{R}^3$ with height h < 2: part II : A geometric conjecture and its proof for generic 2-surfaces
{"title":"Estimates for maximal functions associated to hypersurfaces in $\\mathbbm{R}^3$ with height h < 2: part II : A geometric conjecture and its proof for generic 2-surfaces","authors":"Stefan Buschenhenke, I. Ikromov, Detlef Müller","doi":"10.2422/2036-2145.202301_016","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":8132,"journal":{"name":"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE","volume":"118 23","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2422/2036-2145.202301_016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}