Approximation of the distribution function of the reflectiveness of the surface by the third-degree polynom

O. Romanyuk, A. V. Snigur, O. Romanyuk, L. G. Koval, E. K. Zavalnyuk
{"title":"Approximation of the distribution function of the reflectiveness of the surface by the third-degree polynom","authors":"O. Romanyuk, A. V. Snigur, O. Romanyuk, L. G. Koval, E. K. Zavalnyuk","doi":"10.31649/1681-7893-2023-46-2-37-43","DOIUrl":null,"url":null,"abstract":"In the article a bidirectional reflectance distribution function based on a polynomial of the third degree is developed. The main disadvantages of Schlick, Phong, Blinn reflectance models are analyzed. The approximation of Blinn-Phong model by a cubic polynomial is proposed to improve the productivity of three-dimensional image formation. Formulas for the coefficients of the approximation cubic polynomial are calculated. The disadvantages of using the proposed cubic polynomial for reproducing the glare’s attenuation zone are considered. A function for high-precision reproduction of this zone is proposed, formulas of its coefficients are calculated. A combined function, combining a cubic polynomial for reproducing the glare’s epicenter zone and a function for reproducing the attenuation zone, is proposed. The plot of the combined function is built. It is shown that the combined function reproduces the glare’s epicenter and attenuation zones with small relative and absolute errors. The developed reflectance model provides a highly-productive formation of three-dimensional scenes in computer graphics systems. The proposed distribution function of surface reflectivity can be used in computer graphics systems.","PeriodicalId":142101,"journal":{"name":"Optoelectronic information-power technologies","volume":"113 15","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optoelectronic information-power technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31649/1681-7893-2023-46-2-37-43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the article a bidirectional reflectance distribution function based on a polynomial of the third degree is developed. The main disadvantages of Schlick, Phong, Blinn reflectance models are analyzed. The approximation of Blinn-Phong model by a cubic polynomial is proposed to improve the productivity of three-dimensional image formation. Formulas for the coefficients of the approximation cubic polynomial are calculated. The disadvantages of using the proposed cubic polynomial for reproducing the glare’s attenuation zone are considered. A function for high-precision reproduction of this zone is proposed, formulas of its coefficients are calculated. A combined function, combining a cubic polynomial for reproducing the glare’s epicenter zone and a function for reproducing the attenuation zone, is proposed. The plot of the combined function is built. It is shown that the combined function reproduces the glare’s epicenter and attenuation zones with small relative and absolute errors. The developed reflectance model provides a highly-productive formation of three-dimensional scenes in computer graphics systems. The proposed distribution function of surface reflectivity can be used in computer graphics systems.
用三度多项式逼近表面反射率分布函数
文章开发了基于三次多项式的双向反射分布函数。文章分析了 Schlick、Phong 和 Blinn 反射模型的主要缺点。提出用三次多项式逼近 Blinn-Phong 模型,以提高三维图像形成的效率。计算了近似三次多项式的系数公式。考虑了使用提议的三次多项式重现眩光衰减区的缺点。提出了高精度再现该区域的函数,并计算了其系数公式。提出了一个组合函数,将用于再现眩光震中区的三次多项式和用于再现衰减区的函数结合起来。绘制了组合函数的曲线图。结果表明,组合函数能以较小的相对误差和绝对误差再现眩光的震中区和衰减区。所建立的反射率模型为计算机图形系统中三维场景的形成提供了高生产率。所提出的表面反射率分布函数可用于计算机图形系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信