Bicycle Flow Dynamics of Cyclist Loading and Unloading Processes at Bottlenecks

IF 4.4 2区 工程技术 Q1 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Ning Guo, Wai Wong, Rui Jiang, S. C. Wong, Qing-Yi Hao, Chao-Yun Wu
{"title":"Bicycle Flow Dynamics of Cyclist Loading and Unloading Processes at Bottlenecks","authors":"Ning Guo, Wai Wong, Rui Jiang, S. C. Wong, Qing-Yi Hao, Chao-Yun Wu","doi":"10.1287/trsc.2023.0193","DOIUrl":null,"url":null,"abstract":"Cycling has emerged as one of the most important green transport modes in recent years, with cities increasingly prioritizing cycling in their sustainable policy agenda. However, the associated traffic dynamics, especially the evolution of bicycle flow at bottlenecks, have not been extensively studied. In this study, real-world experiments were conducted to investigate the dynamics of bicycle flow at bottlenecks under various cycling demands generated by the cyclist unloading and loading processes. Upon the activation of the bottleneck, its capacity remained largely constant. For the same physical system, the bottleneck capacity of the cyclist loading process exceeded that of the unloading process, indicating the occurrence of capacity drop and hysteresis. Statistical analyses demonstrated that the capacity drop was attributable to the difference in speeds of the two processes for the same cycling demands after the bottleneck activation. These findings could potentially be explained by behavioral inertia. Further analysis revealed that, compared with the unloading process, the cyclist loading process was associated with higher cycling speeds owing to the higher overtaking rates. The outcomes of this study can advance our understanding of the physics of bicycle flow dynamics and provide valuable insights for transport planning professionals involved in facility planning and control of existing networks. Funding: This work was supported by National Natural Science Foundation of China [Grants 71931002 and 72288101], the University of Hong Kong [Francis S Y Bong Professorship to S. C. Wong], the Guangdong-Hong Kong-Macau Joint Laboratory Program of the 2020 Guangdong New Innovative Strategic Research Fund, Guangdong Science and Technology Department [Grant 2020B1212030009], and Fundamental Research Funds for the Central Universities [Grant JZ2023YQTD0073]. Supplemental Material: The e-companion is available at https://doi.org/10.1287/trsc.2023.0193 .","PeriodicalId":51202,"journal":{"name":"Transportation Science","volume":"71 2","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1287/trsc.2023.0193","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Cycling has emerged as one of the most important green transport modes in recent years, with cities increasingly prioritizing cycling in their sustainable policy agenda. However, the associated traffic dynamics, especially the evolution of bicycle flow at bottlenecks, have not been extensively studied. In this study, real-world experiments were conducted to investigate the dynamics of bicycle flow at bottlenecks under various cycling demands generated by the cyclist unloading and loading processes. Upon the activation of the bottleneck, its capacity remained largely constant. For the same physical system, the bottleneck capacity of the cyclist loading process exceeded that of the unloading process, indicating the occurrence of capacity drop and hysteresis. Statistical analyses demonstrated that the capacity drop was attributable to the difference in speeds of the two processes for the same cycling demands after the bottleneck activation. These findings could potentially be explained by behavioral inertia. Further analysis revealed that, compared with the unloading process, the cyclist loading process was associated with higher cycling speeds owing to the higher overtaking rates. The outcomes of this study can advance our understanding of the physics of bicycle flow dynamics and provide valuable insights for transport planning professionals involved in facility planning and control of existing networks. Funding: This work was supported by National Natural Science Foundation of China [Grants 71931002 and 72288101], the University of Hong Kong [Francis S Y Bong Professorship to S. C. Wong], the Guangdong-Hong Kong-Macau Joint Laboratory Program of the 2020 Guangdong New Innovative Strategic Research Fund, Guangdong Science and Technology Department [Grant 2020B1212030009], and Fundamental Research Funds for the Central Universities [Grant JZ2023YQTD0073]. Supplemental Material: The e-companion is available at https://doi.org/10.1287/trsc.2023.0193 .
瓶颈处自行车装卸过程的自行车流动力学
近年来,自行车已成为最重要的绿色交通方式之一,越来越多的城市在其可持续发展政策议程中优先考虑自行车。然而,与之相关的交通动态,尤其是瓶颈处自行车流的演变,尚未得到广泛研究。在本研究中,我们进行了真实世界实验,以研究在骑车人卸载和装载过程中产生的各种骑行需求下,瓶颈处自行车流的动态变化。瓶颈启动后,其容量基本保持不变。在同一物理系统中,自行车装载过程的瓶颈容量超过了卸载过程的瓶颈容量,这表明出现了容量下降和滞后现象。统计分析表明,容量下降是由于瓶颈激活后,在相同的骑行需求下,两个过程的速度不同造成的。这些发现可能可以用行为惯性来解释。进一步的分析表明,与卸载过程相比,由于超车率较高,骑车人装载过程与较高的骑行速度相关。这项研究的成果可以促进我们对自行车流动态物理学的理解,并为参与设施规划和现有网络控制的交通规划专业人员提供有价值的见解。资助:本研究得到国家自然科学基金[资助号:71931002和72288101]、香港大学[黄世昌基金教授席]、广东省科技厅[资助号:2020B1212030009]的 "2020广东省新型创新战略研究基金粤港澳联合实验室计划 "和中央高校基本科研业务费[资助号:JZ2023YQTD0073]的资助。补充材料:电子版可在 https://doi.org/10.1287/trsc.2023.0193 上查阅。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Transportation Science
Transportation Science 工程技术-运筹学与管理科学
CiteScore
8.30
自引率
10.90%
发文量
111
审稿时长
12 months
期刊介绍: Transportation Science, published quarterly by INFORMS, is the flagship journal of the Transportation Science and Logistics Society of INFORMS. As the foremost scientific journal in the cross-disciplinary operational research field of transportation analysis, Transportation Science publishes high-quality original contributions and surveys on phenomena associated with all modes of transportation, present and prospective, including mainly all levels of planning, design, economic, operational, and social aspects. Transportation Science focuses primarily on fundamental theories, coupled with observational and experimental studies of transportation and logistics phenomena and processes, mathematical models, advanced methodologies and novel applications in transportation and logistics systems analysis, planning and design. The journal covers a broad range of topics that include vehicular and human traffic flow theories, models and their application to traffic operations and management, strategic, tactical, and operational planning of transportation and logistics systems; performance analysis methods and system design and optimization; theories and analysis methods for network and spatial activity interaction, equilibrium and dynamics; economics of transportation system supply and evaluation; methodologies for analysis of transportation user behavior and the demand for transportation and logistics services. Transportation Science is international in scope, with editors from nations around the globe. The editorial board reflects the diverse interdisciplinary interests of the transportation science and logistics community, with members that hold primary affiliations in engineering (civil, industrial, and aeronautical), physics, economics, applied mathematics, and business.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信