A comparative analysis of mechanical power and Its components in pressure-controlled ventilation mode and AVM-2 mode

Kensuke Takaoka, Shane Toma, Philip Lee, Ehab Daoud
{"title":"A comparative analysis of mechanical power and Its components in pressure-controlled ventilation mode and AVM-2 mode","authors":"Kensuke Takaoka, Shane Toma, Philip Lee, Ehab Daoud","doi":"10.53097/jmv.10088","DOIUrl":null,"url":null,"abstract":"Background Mechanical ventilation is a critical therapeutic intervention in the management of patients with respiratory failure. Understanding the implications of different ventilation modes is essential in preventing ventilator-induced lung injuries (VILI). Recently, mechanical power has emerged as a critical element in the development of VILI and mortality. Previous bench work studies have suggested that new optimal (adaptive) modes, such as Adaptive Ventilation Mode 2 (AVM-2), can reduce the mechanical power in turn might reduce the rates of VILI. This study aims to compare the conventional Pressure-Controlled Ventilation (PCV) mode with an emerging design of Adaptive Ventilation Mode-2 (AVM-2), to measure the differences in mechanical power, alongside it’s components of PEEP, Tidal, Elastic, Resistive, Inspiratory, Total work, tidal volume, driving pressure and Power Compliance Index. Methods Between January 2023 and June of 2023, we conducted a prospective crossover study on twenty-two subjects admitted to our ICU within the first day after initiation of mechanical ventilation. Subjects were initially started on PCV settings chosen by the primary treatment team, then switched to AVM-2 with comparable minute ventilation. Mechanical power and its work components (tidal, resistive, PEEP, elastic, inspiratory, total), tidal volume, driving pressure, respiratory rate, and positive end-expiratory pressure, were recorded for each patient every 15 min for the duration of 2 consecutive hours on each mode. Statistical analysis, including paired t-tests were performed to assess the significance of differences between the two ventilation modes. The data is provided in means and 土 SD. Results There were significant differences between PCV and AVM-2 in mechanical power (J/min): 21.62 土 7.61 vs 14.21 土 6.41 (P < 0.001), PEEP work (J): 4.83 土 2.71 vs 4.11 土 2.51 (P < 0.001), Tidal work (J): 3.83 土 1.51 vs 2.21 土 0.89 (P < 0.001), Elastic work (J): 8.62 土 3.13 vs 6.32 土 3.21 (P < 0.001), Resistive work (J): 3.23 土 1.61 vs 1.81 土 1.31 (P 0.013), Inspiratory work (J): 6.95 土 2.58 vs 4.05 土 2.01 (P < 0.001), Total work (J): 11.81 土 3.81 vs 8.11 土 4.23 (P < 0.001). There were significant differences between PCV and AVM-2 in tidal volume (ml): 511 土 8.22 vs 413 土 10.21 (P < 0.001), tidal volume / IBW 7.38 土 1.74 vs 6.49 土 1.72 (P 0.004), driving pressure (cmH2O): 24.45 土 6.29 vs 20.11 土 6.59 (P 0.012), minute ventilation (L/min): 8.96 土 1.34 vs 7.42 土 1.41 (P < 0.001). The respiratory rate (bpm) was not significantly different between PCV and AVM-2 19.61 土 4.32 vs 18.32 土 1.43 (P 0.176). There were no significant differences between PCV and AVM-2 in static compliance (ml/cmH2O) 20.24 土 5.16 vs 22.72 土 6.79 (P 0.346), PaCO2 (mmHg) 44.94 土 9.62 vs 44.13 土 10.11 (P 0.825), and PaO2:FiO2 243.54 土 109.85 vs 274.21 土 125.13 (P 0.343), but significantly higher power compliance index in PCV vs AVM-2: 1.11 土 0.41 vs 0.71 土 0.33 (P < 0.001). Conclusion This study demonstrates that the choice of mechanical ventilation mode, whether PCV or AVM-2, significantly impacts mechanical power and its constituent variables. AVM-2 mode was associated with reduced mechanical power, and its’ components alongside the driving pressure, and tidal volumes, indicating its potential superiority in terms of lung-protective ventilation strategies. Clinicians should consider these findings when selecting the most appropriate ventilation mode to minimize the risk of ventilator-associated complications and improve patient outcomes. Further research is warranted to explore the clinical implications of these findings and to refine best practices in mechanical ventilation. Key words: Mechanical power, Work, PCV, AVM-2, VILI","PeriodicalId":73813,"journal":{"name":"Journal of mechanical ventilation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of mechanical ventilation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53097/jmv.10088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background Mechanical ventilation is a critical therapeutic intervention in the management of patients with respiratory failure. Understanding the implications of different ventilation modes is essential in preventing ventilator-induced lung injuries (VILI). Recently, mechanical power has emerged as a critical element in the development of VILI and mortality. Previous bench work studies have suggested that new optimal (adaptive) modes, such as Adaptive Ventilation Mode 2 (AVM-2), can reduce the mechanical power in turn might reduce the rates of VILI. This study aims to compare the conventional Pressure-Controlled Ventilation (PCV) mode with an emerging design of Adaptive Ventilation Mode-2 (AVM-2), to measure the differences in mechanical power, alongside it’s components of PEEP, Tidal, Elastic, Resistive, Inspiratory, Total work, tidal volume, driving pressure and Power Compliance Index. Methods Between January 2023 and June of 2023, we conducted a prospective crossover study on twenty-two subjects admitted to our ICU within the first day after initiation of mechanical ventilation. Subjects were initially started on PCV settings chosen by the primary treatment team, then switched to AVM-2 with comparable minute ventilation. Mechanical power and its work components (tidal, resistive, PEEP, elastic, inspiratory, total), tidal volume, driving pressure, respiratory rate, and positive end-expiratory pressure, were recorded for each patient every 15 min for the duration of 2 consecutive hours on each mode. Statistical analysis, including paired t-tests were performed to assess the significance of differences between the two ventilation modes. The data is provided in means and 土 SD. Results There were significant differences between PCV and AVM-2 in mechanical power (J/min): 21.62 土 7.61 vs 14.21 土 6.41 (P < 0.001), PEEP work (J): 4.83 土 2.71 vs 4.11 土 2.51 (P < 0.001), Tidal work (J): 3.83 土 1.51 vs 2.21 土 0.89 (P < 0.001), Elastic work (J): 8.62 土 3.13 vs 6.32 土 3.21 (P < 0.001), Resistive work (J): 3.23 土 1.61 vs 1.81 土 1.31 (P 0.013), Inspiratory work (J): 6.95 土 2.58 vs 4.05 土 2.01 (P < 0.001), Total work (J): 11.81 土 3.81 vs 8.11 土 4.23 (P < 0.001). There were significant differences between PCV and AVM-2 in tidal volume (ml): 511 土 8.22 vs 413 土 10.21 (P < 0.001), tidal volume / IBW 7.38 土 1.74 vs 6.49 土 1.72 (P 0.004), driving pressure (cmH2O): 24.45 土 6.29 vs 20.11 土 6.59 (P 0.012), minute ventilation (L/min): 8.96 土 1.34 vs 7.42 土 1.41 (P < 0.001). The respiratory rate (bpm) was not significantly different between PCV and AVM-2 19.61 土 4.32 vs 18.32 土 1.43 (P 0.176). There were no significant differences between PCV and AVM-2 in static compliance (ml/cmH2O) 20.24 土 5.16 vs 22.72 土 6.79 (P 0.346), PaCO2 (mmHg) 44.94 土 9.62 vs 44.13 土 10.11 (P 0.825), and PaO2:FiO2 243.54 土 109.85 vs 274.21 土 125.13 (P 0.343), but significantly higher power compliance index in PCV vs AVM-2: 1.11 土 0.41 vs 0.71 土 0.33 (P < 0.001). Conclusion This study demonstrates that the choice of mechanical ventilation mode, whether PCV or AVM-2, significantly impacts mechanical power and its constituent variables. AVM-2 mode was associated with reduced mechanical power, and its’ components alongside the driving pressure, and tidal volumes, indicating its potential superiority in terms of lung-protective ventilation strategies. Clinicians should consider these findings when selecting the most appropriate ventilation mode to minimize the risk of ventilator-associated complications and improve patient outcomes. Further research is warranted to explore the clinical implications of these findings and to refine best practices in mechanical ventilation. Key words: Mechanical power, Work, PCV, AVM-2, VILI
压力控制通气模式和 AVM-2 模式下机械动力及其组成部分的比较分析
背景机械通气是治疗呼吸衰竭患者的关键治疗措施。了解不同通气模式的影响对于预防呼吸机诱发肺损伤(VILI)至关重要。最近,机械通气已成为导致 VILI 和死亡率的关键因素。之前的工作台研究表明,新的最佳(自适应)模式(如自适应通气模式 2 (AVM-2))可以降低机械功率,从而降低 VILI 的发生率。本研究旨在比较传统的压力控制通气(PCV)模式和新兴的自适应通气模式 2(AVM-2)设计,测量机械功率的差异,以及其组成部分 PEEP、潮气量、弹性、阻力、吸气、总功、潮气量、驱动压力和功率顺应性指数。方法 在 2023 年 1 月至 2023 年 6 月期间,我们对在开始机械通气后第一天内入住重症监护室的 22 名受试者进行了前瞻性交叉研究。受试者最初使用主治团队选择的 PCV 设置,然后切换到具有可比分钟通气量的 AVM-2。在每种模式下连续 2 小时内,每 15 分钟记录一次每位患者的机械功率及其功成分(潮气量、阻力、PEEP、弹性、吸气、总)、潮气量、驱动压力、呼吸频率和呼气末正压。统计分析包括配对 t 检验,以评估两种通气模式之间差异的显著性。数据以平均值和土标度表示。结果 PCV 和 AVM-2 在机械功率(焦耳/分钟)方面存在明显差异:21.62 土 7.61 vs 14.21 土 6.41(P < 0.001),PEEP 功率(J):4.83 土 2.71 vs 4.11 土 2.51(P < 0.001),潮气功(J):3.83 土 1.51 vs 2.21 土 0.89 (P < 0.001),弹性功 (J):8.62 土 3.13 vs 6.32 土 3.21(P < 0.001),电阻功(J):3.23 土 1.61 vs 1.81 土 1.31 (P 0.013),吸气功 (J):6.95 土 2.58 vs 4.05 土 2.01(P < 0.001),总功(焦耳):11.81 土 3.81 vs 8.11 土 4.23(P < 0.001)。PCV 和 AVM-2 在潮气量(毫升)方面存在明显差异:511 土 8.22 vs 413 土 10.21(P < 0.001),潮气量/IBW 7.38 土 1.74 vs 6.49 土 1.72(P 0.004),驱动压力(cmH2O):24.45 土 6.29 vs 20.11 土 6.59(P 0.012),分钟通气量(L/min):8.96 土 1.34 vs 7.42 土 1.41(P < 0.001)。PCV 和 AVM-2 19.61 土 4.32 vs 18.32 土 1.43 之间的呼吸频率(bpm)无显著差异(P 0.176)。PCV 和 AVM-2 在静顺应性(ml/cmH2O)20.24 土 5.16 vs 22.72 土 6.79(P 0.346)、PaCO2(mmHg)44.94 土 9.62 vs 44.13 土 10.11 (P 0.825),PaO2:FiO2 243.54 土 109.85 vs 274.21 土 125.13 (P 0.343),但 PCV vs AVM-2 的功率顺应性指数显著更高:1.11 土 0.41 vs 0.71 土 0.33 (P < 0.001)。结论 本研究表明,机械通气模式的选择,无论是 PCV 还是 AVM-2,都会对机械通气功率及其组成变量产生重大影响。AVM-2 模式与机械通气功率及其驱动压力和潮气量的降低有关,表明其在肺保护性通气策略方面具有潜在的优越性。临床医生在选择最合适的通气模式时应考虑这些发现,以最大限度地降低呼吸机相关并发症的风险并改善患者的预后。有必要进一步研究这些发现的临床意义,并完善机械通气的最佳实践。关键字机械通气 功率 PCV AVM-2 VILI
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信