{"title":"Multi-scale flexibility assessment of electrical, thermal and gas multi-energy systems based on morphological decomposition","authors":"Xiaoqiang Jia, Zhiwei Wang, Songcen Wang, Kaicheng Liu, Xinhe Zhang, Jiajun Zhang","doi":"10.3233/jcm-226959","DOIUrl":null,"url":null,"abstract":"The rapid development of renewable energy has also had an impact on the flexibility of multi energy systems such as electricity, heat, and gas. To analyze the flexible characteristics of multi energy systems at multiple time scales, a multi-scale flexibility evaluation method based on morphological decomposition is proposed. The net load curve is decomposed using mathematical morphology methods, and a multi-scale energy storage configuration method based on the flexibility of electric heating systems is proposed. The analysis data shows that the probability of insufficient upward flexibility, margin expectation, and insufficient expectation of the scale weighted flexibility index are 1.12%, 3.98%, and 1.16%, respectively, while the probability of insufficient downward flexibility, margin expectation, and insufficient expectation are 0.73%, 4.54%, and 0.56%, respectively. The introduction of energy storage and controllable load simultaneously results in an overall downward flexibility index of 0.92% for the system. The results indicate that controllable load can improve the economy of system peak shaving, providing more options for energy storage and configuration in multi energy systems.","PeriodicalId":45004,"journal":{"name":"Journal of Computational Methods in Sciences and Engineering","volume":"19 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Methods in Sciences and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jcm-226959","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid development of renewable energy has also had an impact on the flexibility of multi energy systems such as electricity, heat, and gas. To analyze the flexible characteristics of multi energy systems at multiple time scales, a multi-scale flexibility evaluation method based on morphological decomposition is proposed. The net load curve is decomposed using mathematical morphology methods, and a multi-scale energy storage configuration method based on the flexibility of electric heating systems is proposed. The analysis data shows that the probability of insufficient upward flexibility, margin expectation, and insufficient expectation of the scale weighted flexibility index are 1.12%, 3.98%, and 1.16%, respectively, while the probability of insufficient downward flexibility, margin expectation, and insufficient expectation are 0.73%, 4.54%, and 0.56%, respectively. The introduction of energy storage and controllable load simultaneously results in an overall downward flexibility index of 0.92% for the system. The results indicate that controllable load can improve the economy of system peak shaving, providing more options for energy storage and configuration in multi energy systems.
期刊介绍:
The major goal of the Journal of Computational Methods in Sciences and Engineering (JCMSE) is the publication of new research results on computational methods in sciences and engineering. Common experience had taught us that computational methods originally developed in a given basic science, e.g. physics, can be of paramount importance to other neighboring sciences, e.g. chemistry, as well as to engineering or technology and, in turn, to society as a whole. This undoubtedly beneficial practice of interdisciplinary interactions will be continuously and systematically encouraged by the JCMSE.