{"title":"Machine Learning-Based Academic Result Prediction System","authors":"Megha Bhushan, Utkarsh Verma, Chetna Garg, Arun Negi","doi":"10.4018/ijsi.334715","DOIUrl":null,"url":null,"abstract":"Students' academic performance is a critical issue as it decides his/her career. It is pivotal for the educational institutes to track the performance record because it can help to enhance the standard of their quality education. Thus, the role of the academic result prediction system comes into existence which uses semester grade point average (SGPA) as a metric. The proposed work aims to create a model that can forecast the SGPA of students based on certain traits. It predicts the result in the form of SGPA of computer science students considering their past academic performance, study, and personal habits during their academic semester using different machine learning models, and to compare them based on different accuracy parameters. Some models that are widely used and are found effective in this field are regression algorithms, classification algorithms, and deep learning techniques. The results conclude that deep learning techniques are the most effective in the proposed work because of their high accuracy and performance, depending upon the attributes used in the prediction.","PeriodicalId":55938,"journal":{"name":"International Journal of Software Innovation","volume":"146 2","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Software Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijsi.334715","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Students' academic performance is a critical issue as it decides his/her career. It is pivotal for the educational institutes to track the performance record because it can help to enhance the standard of their quality education. Thus, the role of the academic result prediction system comes into existence which uses semester grade point average (SGPA) as a metric. The proposed work aims to create a model that can forecast the SGPA of students based on certain traits. It predicts the result in the form of SGPA of computer science students considering their past academic performance, study, and personal habits during their academic semester using different machine learning models, and to compare them based on different accuracy parameters. Some models that are widely used and are found effective in this field are regression algorithms, classification algorithms, and deep learning techniques. The results conclude that deep learning techniques are the most effective in the proposed work because of their high accuracy and performance, depending upon the attributes used in the prediction.
期刊介绍:
The International Journal of Software Innovation (IJSI) covers state-of-the-art research and development in all aspects of evolutionary and revolutionary ideas pertaining to software systems and their development. The journal publishes original papers on both theory and practice that reflect and accommodate the fast-changing nature of daily life. Topics of interest include not only application-independent software systems, but also application-specific software systems like healthcare, education, energy, and entertainment software systems, as well as techniques and methodologies for modeling, developing, validating, maintaining, and reengineering software systems and their environments.