{"title":"Preparation and Structure of Zinc–Calcium Hydroxyapatite Solid Solution Particles and Their Ultraviolet Absorptive Ability","authors":"Akemi Yasukawa, Minami Yamada","doi":"10.3390/colloids7040070","DOIUrl":null,"url":null,"abstract":"The calcium ions (Ca2+) of calcium hydroxyapatite (CaHap) were substituted with zinc ions (Zn2+), and zinc–calcium hydroxyapatite solid solution (ZnCaHap) particles were prepared via a precipitation method. The structure of the various obtained particles was investigated via powder X-ray diffraction, field emission scanning electron microscopy and energy dispersive X-ray spectrometry. The ultraviolet (UV) absorption ability of the particles was also investigated using UV–Vis spectroscopy. The morphology of the CaHap comprised fine ellipsoidal particles, and long rod-like particles and large plate-like particles were mixed with the fine particles at higher Zn2+ contents in the particles. Pure ZnCaHap particles were obtained from the starting solution at less than Zn/(Zn + Ca) ([XZn]) of 0.25. Another crystal phase was mixed with the ZnCaHap phase at [XZn] ≥ 0.25. The crystallinity and lattice parameters a and c of the particles decreased with an increase in [XZn] from 0 to 0.10. The UV absorptive ability of the particles first increased and then decreased with increasing Zn2+ content and showed a maximum at [XZn] = 0.30.","PeriodicalId":10433,"journal":{"name":"Colloids and Interfaces","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/colloids7040070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The calcium ions (Ca2+) of calcium hydroxyapatite (CaHap) were substituted with zinc ions (Zn2+), and zinc–calcium hydroxyapatite solid solution (ZnCaHap) particles were prepared via a precipitation method. The structure of the various obtained particles was investigated via powder X-ray diffraction, field emission scanning electron microscopy and energy dispersive X-ray spectrometry. The ultraviolet (UV) absorption ability of the particles was also investigated using UV–Vis spectroscopy. The morphology of the CaHap comprised fine ellipsoidal particles, and long rod-like particles and large plate-like particles were mixed with the fine particles at higher Zn2+ contents in the particles. Pure ZnCaHap particles were obtained from the starting solution at less than Zn/(Zn + Ca) ([XZn]) of 0.25. Another crystal phase was mixed with the ZnCaHap phase at [XZn] ≥ 0.25. The crystallinity and lattice parameters a and c of the particles decreased with an increase in [XZn] from 0 to 0.10. The UV absorptive ability of the particles first increased and then decreased with increasing Zn2+ content and showed a maximum at [XZn] = 0.30.