Yao Liang, Guanghong Du, Anzong Li, Wenhui Chen, Xiaojun Li, Yixiao Guo, Zhiguang Li
{"title":"A signal processing method for continuous mud pressure wave signals in logging-while-drilling systems","authors":"Yao Liang, Guanghong Du, Anzong Li, Wenhui Chen, Xiaojun Li, Yixiao Guo, Zhiguang Li","doi":"10.3233/jcm-226986","DOIUrl":null,"url":null,"abstract":"For signal transmission of mud pressure waves in logging-while-drilling systems, as more measurement parameters are adopted, the conventional signal transmission rate of approximately 1 bps cannot meet the requirements of parameter uploading. Transmission rates greater than 10 bps are widely used by current Chinese and international enterprises in their continuous wave transmission systems. Due to the increasing transmission rates, a conventional single-channel pressure sensor cannot effectively identify the key features of an original signal with a low signal-to-noise ratio at a high transmission rate. This issue results in a low success rate for pressure wave recognition and decoding. This paper addresses a method for the collection of pressure wave signals using multi-channel pressure sensors through the analysis of the signal transmission changes of mud pressure waves with well depths and echo interference caused by drilling rod reflection. In this research, numerical simulation and experimental verification were used to calculate the cross-correlations of the multi-channel signals to effectively remove interference noises such as reflective waves and improve the signal-to-noise ratio of the original signal. The results showed that this method could effectively improve the SNR after the wave filtering of the original pressure wave. The characteristics of the continuous mud pressure wave signals were analysed using a circulation test. A corresponding band-pass filter was designed to remove pump noises to restore the sinusoidal pressure wave signal required by the original transmission rules.","PeriodicalId":45004,"journal":{"name":"Journal of Computational Methods in Sciences and Engineering","volume":"8 S1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Methods in Sciences and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jcm-226986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
For signal transmission of mud pressure waves in logging-while-drilling systems, as more measurement parameters are adopted, the conventional signal transmission rate of approximately 1 bps cannot meet the requirements of parameter uploading. Transmission rates greater than 10 bps are widely used by current Chinese and international enterprises in their continuous wave transmission systems. Due to the increasing transmission rates, a conventional single-channel pressure sensor cannot effectively identify the key features of an original signal with a low signal-to-noise ratio at a high transmission rate. This issue results in a low success rate for pressure wave recognition and decoding. This paper addresses a method for the collection of pressure wave signals using multi-channel pressure sensors through the analysis of the signal transmission changes of mud pressure waves with well depths and echo interference caused by drilling rod reflection. In this research, numerical simulation and experimental verification were used to calculate the cross-correlations of the multi-channel signals to effectively remove interference noises such as reflective waves and improve the signal-to-noise ratio of the original signal. The results showed that this method could effectively improve the SNR after the wave filtering of the original pressure wave. The characteristics of the continuous mud pressure wave signals were analysed using a circulation test. A corresponding band-pass filter was designed to remove pump noises to restore the sinusoidal pressure wave signal required by the original transmission rules.
期刊介绍:
The major goal of the Journal of Computational Methods in Sciences and Engineering (JCMSE) is the publication of new research results on computational methods in sciences and engineering. Common experience had taught us that computational methods originally developed in a given basic science, e.g. physics, can be of paramount importance to other neighboring sciences, e.g. chemistry, as well as to engineering or technology and, in turn, to society as a whole. This undoubtedly beneficial practice of interdisciplinary interactions will be continuously and systematically encouraged by the JCMSE.