{"title":"Enhancing Apple Orchard Productivity through Biochar and Fertilizer Amendments: A Soil Aggregation Study","authors":"Azaz Shakir, J. Bocianowski","doi":"10.56946/jspae.v2i2.277","DOIUrl":null,"url":null,"abstract":"The declining productivity of apple trees can be attributed to the adverse effects of unbalanced climatic conditions and dynamic soil properties. Addressing these challenges through sustainable agricultural practices is crucial to improving apple orchard productivity and ensuring a resilient agricultural system. To enhance the function of fragile ecosystem services, the addition of biochar at an appropriate rate along with chemical fertilizers (NPK) is considered an efficient approach for improving apple trees productivity. The treatments combinations were 0 t ha-1 (Ck), 4 t ha-1 (T1), 8 t ha-1 (T2), 12 t ha-1 (T3), 16 t ha-1 (T4), and 20 t ha-1 (T5). Our results demonstrated that, biochar addition rate in the T5 significantly increased macro-aggregates (WSAs > 0.25 mm), mean weight diameter (MWD) and therefore decreased micro-aggregates (WSAs < 0.25 mm) compare to the control. Soil organic carbon (SOC) and total nitrogen (T.N) in both the bulk soil and water stable aggregates (WSAs) showed similar and an increased trend with biochar addition rate. However, the trend of C:N ratio was in opposition with biochar addition rate for both the bulk soil and WSAs. Additionally, biochar addition rate (T5) significantly intensified partitioning proportion (%) of the SOC, and T.N in WSAs > 0.25 mm, and WSAs < 0.25 mm and therefore showed non significance differences for the others treatments. Such a partitioning proportion of the WSAs 0.5-0.25 mm were lower than the WSAs > 0.5 mm and WSAs < 0.25 mm. These results suggested that biochar addition rate (T5) with chemical fertilizer had a significant effect on the stability of aggregates associated SOC, T.N, and C:N ratio and it may also have a capability in optimizing partitioning proportion (%) of the SOC and T.N in WSAs > 0.25 mm. Thus, it is therefore suggested that biochar addition rate (T5) with chemical fertilizers is the best preference for the stability and optimization of the aggregate associated SOC and T.N which may enhance partitioning proportion (%) of the SOC and T.N in an apple growing soil.","PeriodicalId":29812,"journal":{"name":"Journal of Soil, Plant and Environment","volume":"138 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Soil, Plant and Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56946/jspae.v2i2.277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The declining productivity of apple trees can be attributed to the adverse effects of unbalanced climatic conditions and dynamic soil properties. Addressing these challenges through sustainable agricultural practices is crucial to improving apple orchard productivity and ensuring a resilient agricultural system. To enhance the function of fragile ecosystem services, the addition of biochar at an appropriate rate along with chemical fertilizers (NPK) is considered an efficient approach for improving apple trees productivity. The treatments combinations were 0 t ha-1 (Ck), 4 t ha-1 (T1), 8 t ha-1 (T2), 12 t ha-1 (T3), 16 t ha-1 (T4), and 20 t ha-1 (T5). Our results demonstrated that, biochar addition rate in the T5 significantly increased macro-aggregates (WSAs > 0.25 mm), mean weight diameter (MWD) and therefore decreased micro-aggregates (WSAs < 0.25 mm) compare to the control. Soil organic carbon (SOC) and total nitrogen (T.N) in both the bulk soil and water stable aggregates (WSAs) showed similar and an increased trend with biochar addition rate. However, the trend of C:N ratio was in opposition with biochar addition rate for both the bulk soil and WSAs. Additionally, biochar addition rate (T5) significantly intensified partitioning proportion (%) of the SOC, and T.N in WSAs > 0.25 mm, and WSAs < 0.25 mm and therefore showed non significance differences for the others treatments. Such a partitioning proportion of the WSAs 0.5-0.25 mm were lower than the WSAs > 0.5 mm and WSAs < 0.25 mm. These results suggested that biochar addition rate (T5) with chemical fertilizer had a significant effect on the stability of aggregates associated SOC, T.N, and C:N ratio and it may also have a capability in optimizing partitioning proportion (%) of the SOC and T.N in WSAs > 0.25 mm. Thus, it is therefore suggested that biochar addition rate (T5) with chemical fertilizers is the best preference for the stability and optimization of the aggregate associated SOC and T.N which may enhance partitioning proportion (%) of the SOC and T.N in an apple growing soil.
期刊介绍:
Journal of Soil, Plant and Environment is an open peer-reviewed journal that considers articles and review articles on all aspects of agricultural sciences.
Aim and Scope
Journal of Soil, Plant and Environment (ISSN: 2957-9082) is an international journal dedicated to the advancements in agriculture throughout the world. The goal of this journal is to provide a platform for scientists, students, academics and engineers all over the world to promote, share, and discuss various new issues and developments in different areas of agricultural sciences. All manuscripts must be prepared in English and are subject to a rigorous and fair peer-review process. Accepted papers will appear online within 3 weeks followed by printed hard copy.
Journal of Soil, Plant and Environment (ISSN: 2957-9082) publishes original papers including but not limited to the following fields: Soil–plant relationships; crop science; soil science; biometry; crop, soil, pasture, and range management; crop, forage, and pasture production and utilization; turfgrass; agroclimatology; agronomic models; integrated pest management; integrated agricultural systems; and various aspects of entomology, weed science, animal science, plant pathology, and agricultural economics as applied to production agriculture.
We are also interested in: 1) Short Reports– 2-5 pages where the paper is intended to present either an original idea with theoretical treatment or preliminary data and results; 2) Book Reviews – Comments and critiques of recently published books in agricultural sciences.