Rate of propagation for the Fisher-KPP equation with nonlocal diffusion and free boundaries

IF 2.5 1区 数学 Q1 MATHEMATICS
Yihong Du, W. Ni
{"title":"Rate of propagation for the Fisher-KPP equation with nonlocal diffusion and free boundaries","authors":"Yihong Du, W. Ni","doi":"10.4171/jems/1392","DOIUrl":null,"url":null,"abstract":". In this paper, we obtain sharp estimates for the rate of propagation of the Fisher-KPP equation with nonlocal diffusion and free boundaries. The nonlocal diffusion operator is given by (cid:82) R J ( x − y ) u ( t, y ) dy − u ( t, x ), and our estimates hold for some typical classes of kernel functions J ( x ). For example, if for | x | (cid:29) 1 the kernel function satisfies J ( x ) ∼ | x | − γ with γ > 1, then it follows from [17] that there is a finite spreading speed when γ > 2, namely the free boundary x = h ( t ) satisfies lim t →∞ h ( t ) /t = c 0 for some uniquely determined positive constant c 0 depending on J , and when γ ∈ (1 , 2], lim t →∞ h ( t ) /t = ∞ ; the estimates in the current paper imply that, for t (cid:29) 1, c 0 t − h ( t ) ∼   1 when γ > 3 ln t when γ = 3 , t 3 − γ when γ ∈ (2 , 3) , and h ( t ) ∼ (cid:26) t ln t when γ = 2 , t 1 / ( γ − 1) when γ ∈ (1 , 2) . Our approach is based on subtle integral estimates and constructions of upper and lower solutions, which rely crucially on guessing correctly the order of growth of the term to be estimated. The techniques developed here lay the ground for extensions to more general situations.","PeriodicalId":50003,"journal":{"name":"Journal of the European Mathematical Society","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2023-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the European Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jems/1392","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

. In this paper, we obtain sharp estimates for the rate of propagation of the Fisher-KPP equation with nonlocal diffusion and free boundaries. The nonlocal diffusion operator is given by (cid:82) R J ( x − y ) u ( t, y ) dy − u ( t, x ), and our estimates hold for some typical classes of kernel functions J ( x ). For example, if for | x | (cid:29) 1 the kernel function satisfies J ( x ) ∼ | x | − γ with γ > 1, then it follows from [17] that there is a finite spreading speed when γ > 2, namely the free boundary x = h ( t ) satisfies lim t →∞ h ( t ) /t = c 0 for some uniquely determined positive constant c 0 depending on J , and when γ ∈ (1 , 2], lim t →∞ h ( t ) /t = ∞ ; the estimates in the current paper imply that, for t (cid:29) 1, c 0 t − h ( t ) ∼   1 when γ > 3 ln t when γ = 3 , t 3 − γ when γ ∈ (2 , 3) , and h ( t ) ∼ (cid:26) t ln t when γ = 2 , t 1 / ( γ − 1) when γ ∈ (1 , 2) . Our approach is based on subtle integral estimates and constructions of upper and lower solutions, which rely crucially on guessing correctly the order of growth of the term to be estimated. The techniques developed here lay the ground for extensions to more general situations.
具有非局部扩散和自由边界的 Fisher-KPP 方程的传播速率
.在本文中,我们得到了具有非局部二重扩散和自由边界的 Fisher-KPP 方程传播速度的精确估计值。非局部扩散算子由 (cid:82) R J ( x - y ) u ( t, y ) dy - u ( t, x ) 给出,我们的估计值对于一些典型的核函数 J ( x ) 类是成立的。例如,如果对于 | x | (cid:29) 1 的核函数满足 J ( x ) ∼ | x | - γ,且 γ > 1,那么根据[17],当 γ > 2 时,存在一个有限的扩散速度、即自由边界 x = h ( t ) 对于某个取决于 J 的唯一确定的正常数 c 0 满足 lim t →∞ h ( t ) /t = c 0,而当γ∈(1 , 2]时,lim t →∞ h ( t ) /t = ∞;本文的估计意味着,对于 t (cid:29) 1 时,当 γ > 3 时,c 0 t - h ( t ) ∼   1 ;当 γ = 3 时,t 3 - γ ;当 γ ∈ (2 , 3) 时,h ( t ) ∼ (cid:26) t ;当 γ = 2 时,t 1 / ( γ - 1) ;当 γ ∈ (1 , 2) 时,h ( t ) ∼ (cid:26) t 。我们的方法基于微妙的积分估计和上下限解的构造,其关键在于正确猜测待估计项的增长阶数。这里开发的技术为扩展到更一般的情况奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
103
审稿时长
6-12 weeks
期刊介绍: The Journal of the European Mathematical Society (JEMS) is the official journal of the EMS. The Society, founded in 1990, works at promoting joint scientific efforts between the many different structures that characterize European mathematics. JEMS will publish research articles in all active areas of pure and applied mathematics. These will be selected by a distinguished, international board of editors for their outstanding quality and interest, according to the highest international standards. Occasionally, substantial survey papers on topics of exceptional interest will also be published. Starting in 1999, the Journal was published by Springer-Verlag until the end of 2003. Since 2004 it is published by the EMS Publishing House. The first Editor-in-Chief of the Journal was J. Jost, succeeded by H. Brezis in 2004. The Journal of the European Mathematical Society is covered in: Mathematical Reviews (MR), Current Mathematical Publications (CMP), MathSciNet, Zentralblatt für Mathematik, Zentralblatt MATH Database, Science Citation Index (SCI), Science Citation Index Expanded (SCIE), CompuMath Citation Index (CMCI), Current Contents/Physical, Chemical & Earth Sciences (CC/PC&ES), ISI Alerting Services, Journal Citation Reports/Science Edition, Web of Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信