{"title":"Rate of propagation for the Fisher-KPP equation with nonlocal diffusion and free boundaries","authors":"Yihong Du, W. Ni","doi":"10.4171/jems/1392","DOIUrl":null,"url":null,"abstract":". In this paper, we obtain sharp estimates for the rate of propagation of the Fisher-KPP equation with nonlocal diffusion and free boundaries. The nonlocal diffusion operator is given by (cid:82) R J ( x − y ) u ( t, y ) dy − u ( t, x ), and our estimates hold for some typical classes of kernel functions J ( x ). For example, if for | x | (cid:29) 1 the kernel function satisfies J ( x ) ∼ | x | − γ with γ > 1, then it follows from [17] that there is a finite spreading speed when γ > 2, namely the free boundary x = h ( t ) satisfies lim t →∞ h ( t ) /t = c 0 for some uniquely determined positive constant c 0 depending on J , and when γ ∈ (1 , 2], lim t →∞ h ( t ) /t = ∞ ; the estimates in the current paper imply that, for t (cid:29) 1, c 0 t − h ( t ) ∼ 1 when γ > 3 ln t when γ = 3 , t 3 − γ when γ ∈ (2 , 3) , and h ( t ) ∼ (cid:26) t ln t when γ = 2 , t 1 / ( γ − 1) when γ ∈ (1 , 2) . Our approach is based on subtle integral estimates and constructions of upper and lower solutions, which rely crucially on guessing correctly the order of growth of the term to be estimated. The techniques developed here lay the ground for extensions to more general situations.","PeriodicalId":50003,"journal":{"name":"Journal of the European Mathematical Society","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2023-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the European Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jems/1392","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2
Abstract
. In this paper, we obtain sharp estimates for the rate of propagation of the Fisher-KPP equation with nonlocal diffusion and free boundaries. The nonlocal diffusion operator is given by (cid:82) R J ( x − y ) u ( t, y ) dy − u ( t, x ), and our estimates hold for some typical classes of kernel functions J ( x ). For example, if for | x | (cid:29) 1 the kernel function satisfies J ( x ) ∼ | x | − γ with γ > 1, then it follows from [17] that there is a finite spreading speed when γ > 2, namely the free boundary x = h ( t ) satisfies lim t →∞ h ( t ) /t = c 0 for some uniquely determined positive constant c 0 depending on J , and when γ ∈ (1 , 2], lim t →∞ h ( t ) /t = ∞ ; the estimates in the current paper imply that, for t (cid:29) 1, c 0 t − h ( t ) ∼ 1 when γ > 3 ln t when γ = 3 , t 3 − γ when γ ∈ (2 , 3) , and h ( t ) ∼ (cid:26) t ln t when γ = 2 , t 1 / ( γ − 1) when γ ∈ (1 , 2) . Our approach is based on subtle integral estimates and constructions of upper and lower solutions, which rely crucially on guessing correctly the order of growth of the term to be estimated. The techniques developed here lay the ground for extensions to more general situations.
.在本文中,我们得到了具有非局部二重扩散和自由边界的 Fisher-KPP 方程传播速度的精确估计值。非局部扩散算子由 (cid:82) R J ( x - y ) u ( t, y ) dy - u ( t, x ) 给出,我们的估计值对于一些典型的核函数 J ( x ) 类是成立的。例如,如果对于 | x | (cid:29) 1 的核函数满足 J ( x ) ∼ | x | - γ,且 γ > 1,那么根据[17],当 γ > 2 时,存在一个有限的扩散速度、即自由边界 x = h ( t ) 对于某个取决于 J 的唯一确定的正常数 c 0 满足 lim t →∞ h ( t ) /t = c 0,而当γ∈(1 , 2]时,lim t →∞ h ( t ) /t = ∞;本文的估计意味着,对于 t (cid:29) 1 时,当 γ > 3 时,c 0 t - h ( t ) ∼ 1 ;当 γ = 3 时,t 3 - γ ;当 γ ∈ (2 , 3) 时,h ( t ) ∼ (cid:26) t ;当 γ = 2 时,t 1 / ( γ - 1) ;当 γ ∈ (1 , 2) 时,h ( t ) ∼ (cid:26) t 。我们的方法基于微妙的积分估计和上下限解的构造,其关键在于正确猜测待估计项的增长阶数。这里开发的技术为扩展到更一般的情况奠定了基础。
期刊介绍:
The Journal of the European Mathematical Society (JEMS) is the official journal of the EMS.
The Society, founded in 1990, works at promoting joint scientific efforts between the many different structures that characterize European mathematics. JEMS will publish research articles in all active areas of pure and applied mathematics. These will be selected by a distinguished, international board of editors for their outstanding quality and interest, according to the highest international standards.
Occasionally, substantial survey papers on topics of exceptional interest will also be published. Starting in 1999, the Journal was published by Springer-Verlag until the end of 2003. Since 2004 it is published by the EMS Publishing House. The first Editor-in-Chief of the Journal was J. Jost, succeeded by H. Brezis in 2004.
The Journal of the European Mathematical Society is covered in:
Mathematical Reviews (MR), Current Mathematical Publications (CMP), MathSciNet, Zentralblatt für Mathematik, Zentralblatt MATH Database, Science Citation Index (SCI), Science Citation Index Expanded (SCIE), CompuMath Citation Index (CMCI), Current Contents/Physical, Chemical & Earth Sciences (CC/PC&ES), ISI Alerting Services, Journal Citation Reports/Science Edition, Web of Science.