Evaluating Ordinal Pattern Features for 2D Colored Noise Classification

{"title":"Evaluating Ordinal Pattern Features for 2D Colored Noise Classification","authors":"","doi":"10.5540/03.2023.010.01.0049","DOIUrl":null,"url":null,"abstract":"This study explores the potential of permutation entropy and statistical complexity for analyzing time series and image data of varying dimensions and noise types to extract features for computational vision. We projected one-dimensional colored noise of different sizes and one-and two-dimensional 1 /f noise with different embedding dimensions to observe changes in permutation entropy and statistical complexity. The results of this study provide insights into the usefulness of the permutation entropy and statistical complexity in the analysis of complex time series data for future parameter extraction","PeriodicalId":274912,"journal":{"name":"Proceeding Series of the Brazilian Society of Computational and Applied Mathematics","volume":"86 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceeding Series of the Brazilian Society of Computational and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5540/03.2023.010.01.0049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the potential of permutation entropy and statistical complexity for analyzing time series and image data of varying dimensions and noise types to extract features for computational vision. We projected one-dimensional colored noise of different sizes and one-and two-dimensional 1 /f noise with different embedding dimensions to observe changes in permutation entropy and statistical complexity. The results of this study provide insights into the usefulness of the permutation entropy and statistical complexity in the analysis of complex time series data for future parameter extraction
评估二维彩色噪声分类的正则模式特征
本研究探索了置换熵和统计复杂性在分析不同维度和噪声类型的时间序列和图像数据方面的潜力,从而为计算视觉提取特征。我们投射了不同大小的一维彩色噪声和具有不同嵌入维度的一维和二维 1 /f 噪声,以观察置换熵和统计复杂度的变化。这项研究的结果让我们深入了解了置换熵和统计复杂性在分析复杂时间序列数据中的有用性,有助于未来的参数提取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信