Enhanced signal-to-noise ratio of array imaging using quantum state engineering

Fan Jia, Zijing Zhang, Yuan Zhao
{"title":"Enhanced signal-to-noise ratio of array imaging using quantum state engineering","authors":"Fan Jia, Zijing Zhang, Yuan Zhao","doi":"10.1117/12.3007663","DOIUrl":null,"url":null,"abstract":"Laser active detection is a remote sensing technology that utilizes laser beams to detect various attributes of a target such as distance, orientation, height, and speed. The direct detection Signal-to-Noise Ratio (SNR) achieved by traditional array imaging systems is usually unsatisfactory because of different types of interferences, including backscattering effects and background noise. Related to this, the performance of existing methods for noise filtering are bounded by the classical detection signal-to-noise ratio. In particular, and there is no effective filtering method when the wavelength of the signal and noise is the same. To address this challenge, this study presents a novel approach to enhancing the Signal-to-Noise Ratio (SNR) of array imaging through the use of quantum state engineering. At the transmitter, we modulate the signal photons with orbital angular momentum to distinguish them from the photons of noise without orbital angular momentum. This modulation makes the signal and noise have differences in spatial intensity distribution. Due to this spatial difference, the signal and noise can be non-destructively separated after passing through the filter at the receiver, which gives enhanced SNR. The results show that this method can effectively filter out the noise with the same wavelength as the signal, and can improve the performance of array imaging detection.","PeriodicalId":298662,"journal":{"name":"Applied Optics and Photonics China","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Optics and Photonics China","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3007663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Laser active detection is a remote sensing technology that utilizes laser beams to detect various attributes of a target such as distance, orientation, height, and speed. The direct detection Signal-to-Noise Ratio (SNR) achieved by traditional array imaging systems is usually unsatisfactory because of different types of interferences, including backscattering effects and background noise. Related to this, the performance of existing methods for noise filtering are bounded by the classical detection signal-to-noise ratio. In particular, and there is no effective filtering method when the wavelength of the signal and noise is the same. To address this challenge, this study presents a novel approach to enhancing the Signal-to-Noise Ratio (SNR) of array imaging through the use of quantum state engineering. At the transmitter, we modulate the signal photons with orbital angular momentum to distinguish them from the photons of noise without orbital angular momentum. This modulation makes the signal and noise have differences in spatial intensity distribution. Due to this spatial difference, the signal and noise can be non-destructively separated after passing through the filter at the receiver, which gives enhanced SNR. The results show that this method can effectively filter out the noise with the same wavelength as the signal, and can improve the performance of array imaging detection.
利用量子态工程提高阵列成像的信噪比
激光主动探测是一种利用激光束探测目标的各种属性(如距离、方向、高度和速度)的遥感技术。传统阵列成像系统实现的直接探测信噪比(SNR)通常不能令人满意,原因是存在不同类型的干扰,包括反向散射效应和背景噪声。与此相关的是,现有噪声过滤方法的性能受到经典检测信噪比的限制。特别是,当信号和噪声的波长相同时,没有有效的滤波方法。为了应对这一挑战,本研究提出了一种通过量子态工程来提高阵列成像信噪比(SNR)的新方法。在发射器处,我们用轨道角动量对信号光子进行调制,以将其与无轨道角动量的噪声光子区分开来。这种调制使信号和噪声在空间强度分布上存在差异。由于这种空间差异,信号和噪声在通过接收器的滤波器后可以无损分离,从而提高信噪比。结果表明,这种方法能有效滤除与信号波长相同的噪声,并能提高阵列成像检测的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信