Generating Mathematical Expressions for Estimation of Atomic Coordinates of Carbon Nanotubes Using Genetic Programming Symbolic Regression

N. Anđelić, Sandi Baressi Baressi Šegota
{"title":"Generating Mathematical Expressions for Estimation of Atomic Coordinates of Carbon Nanotubes Using Genetic Programming Symbolic Regression","authors":"N. Anđelić, Sandi Baressi Baressi Šegota","doi":"10.3390/technologies11060185","DOIUrl":null,"url":null,"abstract":"The study addresses the formidable challenge of calculating atomic coordinates for carbon nanotubes (CNTs) using density functional theory (DFT), a process that can endure for days. To tackle this issue, the research leverages the Genetic Programming Symbolic Regression (GPSR) method on a publicly available dataset. The primary aim is to assess if the resulting Mathematical Equations (MEs) from GPSR can accurately estimate calculated atomic coordinates obtained through DFT. Given the numerous hyperparameters in GPSR, a Random Hyperparameter Value Search (RHVS) method is devised to pinpoint the optimal combination of hyperparameter values, maximizing estimation accuracy. Two distinct approaches are considered. The first involves applying GPSR to estimate calculated coordinates (uc, vc, wc) using all input variables (initial atomic coordinates u, v, w, and integers n, m specifying the chiral vector). The second approach applies GPSR to estimate each calculated atomic coordinate using integers n and m alongside the corresponding initial atomic coordinates. This results in the creation of six different dataset variations. The GPSR algorithm undergoes training via a 5-fold cross-validation process. The evaluation metrics include the coefficient of determination (R2), mean absolute error (MAE), root mean squared error (RMSE), and the depth and length of generated MEs. The findings from this approach demonstrate that GPSR can effectively estimate CNT atomic coordinates with high accuracy, as indicated by an impressive R2≈1.0. This study not only contributes to the advancement of accurate estimation techniques for atomic coordinates but also introduces a systematic approach for optimizing hyperparameters in GPSR, showcasing its potential for broader applications in materials science and computational chemistry.","PeriodicalId":22341,"journal":{"name":"Technologies","volume":" 47","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/technologies11060185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The study addresses the formidable challenge of calculating atomic coordinates for carbon nanotubes (CNTs) using density functional theory (DFT), a process that can endure for days. To tackle this issue, the research leverages the Genetic Programming Symbolic Regression (GPSR) method on a publicly available dataset. The primary aim is to assess if the resulting Mathematical Equations (MEs) from GPSR can accurately estimate calculated atomic coordinates obtained through DFT. Given the numerous hyperparameters in GPSR, a Random Hyperparameter Value Search (RHVS) method is devised to pinpoint the optimal combination of hyperparameter values, maximizing estimation accuracy. Two distinct approaches are considered. The first involves applying GPSR to estimate calculated coordinates (uc, vc, wc) using all input variables (initial atomic coordinates u, v, w, and integers n, m specifying the chiral vector). The second approach applies GPSR to estimate each calculated atomic coordinate using integers n and m alongside the corresponding initial atomic coordinates. This results in the creation of six different dataset variations. The GPSR algorithm undergoes training via a 5-fold cross-validation process. The evaluation metrics include the coefficient of determination (R2), mean absolute error (MAE), root mean squared error (RMSE), and the depth and length of generated MEs. The findings from this approach demonstrate that GPSR can effectively estimate CNT atomic coordinates with high accuracy, as indicated by an impressive R2≈1.0. This study not only contributes to the advancement of accurate estimation techniques for atomic coordinates but also introduces a systematic approach for optimizing hyperparameters in GPSR, showcasing its potential for broader applications in materials science and computational chemistry.
利用遗传编程符号回归生成估算碳纳米管原子坐标的数学表达式
这项研究解决了利用密度泛函理论(DFT)计算碳纳米管(CNT)原子坐标这一艰巨挑战,而这一过程可能持续数天。为解决这一问题,研究利用遗传编程符号回归(GPSR)方法对公开数据集进行了处理。主要目的是评估 GPSR 得出的数学方程(ME)能否准确估算出通过 DFT 计算得到的原子坐标。鉴于 GPSR 中的超参数众多,因此设计了一种随机超参数值搜索(RHVS)方法,以确定超参数值的最佳组合,从而最大限度地提高估算精度。本文考虑了两种不同的方法。第一种方法是应用 GPSR,使用所有输入变量(初始原子坐标 u、v、w 和指定手性矢量的整数 n、m)来估计计算出的坐标(uc、vc、wc)。第二种方法是使用 GPSR 估算每个计算出的原子坐标,使用整数 n 和 m 以及相应的初始原子坐标。这样就产生了六种不同的数据集变化。GPSR 算法通过 5 倍交叉验证过程进行训练。评估指标包括判定系数(R2)、平均绝对误差(MAE)、均方根误差(RMSE)以及生成 ME 的深度和长度。该方法的研究结果表明,GPSR 可以有效地高精度估算 CNT 原子坐标,R2≈1.0 的结果令人印象深刻。这项研究不仅推动了原子坐标精确估算技术的发展,还引入了优化 GPSR 超参数的系统方法,展示了 GPSR 在材料科学和计算化学领域更广泛应用的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信