TATB thermal decomposition: An improved kinetic model for explosive safety analysis

IF 1.7 4区 工程技术 Q3 CHEMISTRY, APPLIED
Jason S. Moore, Keith D. Morrison, Alan K. Burnham, A. Racoveanu, John G. Reynolds, B. Koroglu, K. Coffee, Gregory L. Klunder
{"title":"TATB thermal decomposition: An improved kinetic model for explosive safety analysis","authors":"Jason S. Moore, Keith D. Morrison, Alan K. Burnham, A. Racoveanu, John G. Reynolds, B. Koroglu, K. Coffee, Gregory L. Klunder","doi":"10.1002/prep.202300237","DOIUrl":null,"url":null,"abstract":"We investigate and model the cook‐off behavior of 1,3,5‐triamino‐2,4,6‐trinitrobenzene (TATB) to understand the response of explosive systems in abnormal thermal environments. Decomposition has been explored via conventional ODTX (one‐dimensional time‐to‐explosion), PODTX (ODTX with pressure‐measurement), PyGC‐MS (pyrolysis gas chromatography mass spectrometry), TGA (thermo‐gravimetric analysis), DSC (differential scanning calorimetry), and IR (infrared spectroscopy) experiments under isothermal and ramped temperature profiles. The data were used to fit rate parameters for proposed reaction schemes in a MATLAB thermo‐chemical computational model. These parameterizations were carried out utilizing a genetic algorithm optimization method on LLNL's high‐performance computing clusters, which enabled significant parallelization. These results include a multi‐step reaction decomposition model, identification of likely autocatalytic gas‐phase species, accurate high‐temperature sensitization, and prediction of confined system pressurization. This model will be scalable to several applications involving TATB‐based explosives, like LX‐17, including thermal safety models of full‐scale systems.","PeriodicalId":20800,"journal":{"name":"Propellants, Explosives, Pyrotechnics","volume":"20 4","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Propellants, Explosives, Pyrotechnics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/prep.202300237","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate and model the cook‐off behavior of 1,3,5‐triamino‐2,4,6‐trinitrobenzene (TATB) to understand the response of explosive systems in abnormal thermal environments. Decomposition has been explored via conventional ODTX (one‐dimensional time‐to‐explosion), PODTX (ODTX with pressure‐measurement), PyGC‐MS (pyrolysis gas chromatography mass spectrometry), TGA (thermo‐gravimetric analysis), DSC (differential scanning calorimetry), and IR (infrared spectroscopy) experiments under isothermal and ramped temperature profiles. The data were used to fit rate parameters for proposed reaction schemes in a MATLAB thermo‐chemical computational model. These parameterizations were carried out utilizing a genetic algorithm optimization method on LLNL's high‐performance computing clusters, which enabled significant parallelization. These results include a multi‐step reaction decomposition model, identification of likely autocatalytic gas‐phase species, accurate high‐temperature sensitization, and prediction of confined system pressurization. This model will be scalable to several applications involving TATB‐based explosives, like LX‐17, including thermal safety models of full‐scale systems.

Abstract Image

TATB 热分解:用于爆炸安全分析的改进动力学模型
我们对 1,3,5-三氨基-2,4,6-三硝基苯(TATB)的熟化行为进行了研究和建模,以了解爆炸系统在异常热环境中的反应。通过传统的 ODTX(一维至爆炸时间)、PODTX(带压力测量的 ODTX)、PyGC-MS(热解气相色谱质谱法)、TGA(热重分析)、DSC(差示扫描量热法)和 IR(红外光谱法)实验,在等温和升温曲线下对分解进行了探索。这些数据用于在 MATLAB 热化学计算模型中拟合拟议反应方案的速率参数。这些参数设置是在 LLNL 的高性能计算集群上利用遗传算法优化方法进行的,从而实现了显著的并行化。这些结果包括一个多步骤反应分解模型、识别可能的自催化气相物种、精确的高温敏化以及密闭系统增压预测。该模型可扩展到涉及以 TATB 为基础的爆炸物(如 LX-17)的多个应用领域,包括全尺寸系统的热安全模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Propellants, Explosives, Pyrotechnics
Propellants, Explosives, Pyrotechnics 工程技术-工程:化工
CiteScore
4.20
自引率
16.70%
发文量
235
审稿时长
2.7 months
期刊介绍: Propellants, Explosives, Pyrotechnics (PEP) is an international, peer-reviewed journal containing Full Papers, Short Communications, critical Reviews, as well as details of forthcoming meetings and book reviews concerned with the research, development and production in relation to propellants, explosives, and pyrotechnics for all applications. Being the official journal of the International Pyrotechnics Society, PEP is a vital medium and the state-of-the-art forum for the exchange of science and technology in energetic materials. PEP is published 12 times a year. PEP is devoted to advancing the science, technology and engineering elements in the storage and manipulation of chemical energy, specifically in propellants, explosives and pyrotechnics. Articles should provide scientific context, articulate impact, and be generally applicable to the energetic materials and wider scientific community. PEP is not a defense journal and does not feature the weaponization of materials and related systems or include information that would aid in the development or utilization of improvised explosive systems, e.g., synthesis routes to terrorist explosives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信