Dynamic behavior analysis and ensemble learning for credit card attrition prediction

Bolin Chen
{"title":"Dynamic behavior analysis and ensemble learning for credit card attrition prediction","authors":"Bolin Chen","doi":"10.47813/2782-2818-2023-3-4-0109-0118","DOIUrl":null,"url":null,"abstract":"Credit card attrition imposes a substantial business cost for financial institutions. Early and accurate prediction of customer churn allows banks to take proactive retention measures. However, modeling credit card attrition presents complex challenges given evolutionary customer spending behaviors. This paper puts forth a robust methodology harnessing dynamic behavior analysis along with ensemble learning to capture non-static patterns in transaction data. Explainability techniques further enable interpretation of attrition likelihood on an individual customer basis. Rigorous experiments demonstrate significant predictive performance improvements attained using the proposed approach.","PeriodicalId":427736,"journal":{"name":"Современные инновации, системы и технологии - Modern Innovations, Systems and Technologies","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Современные инновации, системы и технологии - Modern Innovations, Systems and Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47813/2782-2818-2023-3-4-0109-0118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Credit card attrition imposes a substantial business cost for financial institutions. Early and accurate prediction of customer churn allows banks to take proactive retention measures. However, modeling credit card attrition presents complex challenges given evolutionary customer spending behaviors. This paper puts forth a robust methodology harnessing dynamic behavior analysis along with ensemble learning to capture non-static patterns in transaction data. Explainability techniques further enable interpretation of attrition likelihood on an individual customer basis. Rigorous experiments demonstrate significant predictive performance improvements attained using the proposed approach.
动态行为分析和集合学习用于信用卡损耗预测
信用卡流失给金融机构带来了巨大的业务成本。及早准确地预测客户流失情况,可以让银行采取积极主动的挽留措施。然而,鉴于客户消费行为的演变,信用卡流失建模面临着复杂的挑战。本文提出了一种稳健的方法,利用动态行为分析和集合学习来捕捉交易数据中的非静态模式。可解释性技术可进一步解释单个客户的流失可能性。严格的实验证明,使用所提出的方法可以显著提高预测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信