Human Precision-Cut Liver Slices: A Potential Platform to Study Alcohol-Related Liver Disease

IF 4.9 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Una Rastovic, Sergio Francesco Bozzano, Antonio Riva, Arturo Simoni-Nieves, Nicola Harris, Rosa Miquel, Carolin Lackner, Yoh Zen, A. Zamalloa, Krishna Menon, Nigel Heaton, S. Chokshi, E. Palma
{"title":"Human Precision-Cut Liver Slices: A Potential Platform to Study Alcohol-Related Liver Disease","authors":"Una Rastovic, Sergio Francesco Bozzano, Antonio Riva, Arturo Simoni-Nieves, Nicola Harris, Rosa Miquel, Carolin Lackner, Yoh Zen, A. Zamalloa, Krishna Menon, Nigel Heaton, S. Chokshi, E. Palma","doi":"10.3390/ijms25010150","DOIUrl":null,"url":null,"abstract":"Alcohol-related liver disease (ALD) encompasses a range of pathological conditions that are complex to study at the clinical and preclinical levels. Despite the global burden of ALD, there is a lack of effective treatments, and mortality is high. One of the reasons for the unsuccessful development of novel therapies is that experimental studies are hindered by the challenge of recapitulating this multifactorial disorder in vitro, including the contributions of hepatotoxicity, impaired lipid metabolism, fibrosis and inflammatory cytokine storm, which are critical drivers in the pathogenesis of ALD in patients and primary targets for drug development. Here, we present the unique characteristics of the culture of human precision-cut liver slices (PCLS) to replicate key disease processes in ALD. PCLS were prepared from human liver specimens and treated with ethanol alone or in combination with fatty acids and lipopolysaccharide (FA + LPS) for up to 5 days to induce hepatotoxic, inflammatory and fibrotic events associated with ALD. Alcohol insult induced hepatocyte death which was more pronounced with the addition of FA + LPS. This mixture showed a significant increase in the cytokines conventionally associated with the prototypical inflammatory response observed in severe ALD, and interestingly, alcohol alone exhibited a different effect. Profibrogenic activation was also observed in the slices and investigated in the context of slice preparation. These results support the versatility of this organotypic model to study different pathways involved in alcohol-induced liver damage and ALD progression and highlight the applicability of the PCLS for drug discovery, confirming their relevance as a bridge between preclinical and clinical studies.","PeriodicalId":49179,"journal":{"name":"International Journal of Molecular Sciences","volume":"78 1","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/ijms25010150","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Alcohol-related liver disease (ALD) encompasses a range of pathological conditions that are complex to study at the clinical and preclinical levels. Despite the global burden of ALD, there is a lack of effective treatments, and mortality is high. One of the reasons for the unsuccessful development of novel therapies is that experimental studies are hindered by the challenge of recapitulating this multifactorial disorder in vitro, including the contributions of hepatotoxicity, impaired lipid metabolism, fibrosis and inflammatory cytokine storm, which are critical drivers in the pathogenesis of ALD in patients and primary targets for drug development. Here, we present the unique characteristics of the culture of human precision-cut liver slices (PCLS) to replicate key disease processes in ALD. PCLS were prepared from human liver specimens and treated with ethanol alone or in combination with fatty acids and lipopolysaccharide (FA + LPS) for up to 5 days to induce hepatotoxic, inflammatory and fibrotic events associated with ALD. Alcohol insult induced hepatocyte death which was more pronounced with the addition of FA + LPS. This mixture showed a significant increase in the cytokines conventionally associated with the prototypical inflammatory response observed in severe ALD, and interestingly, alcohol alone exhibited a different effect. Profibrogenic activation was also observed in the slices and investigated in the context of slice preparation. These results support the versatility of this organotypic model to study different pathways involved in alcohol-induced liver damage and ALD progression and highlight the applicability of the PCLS for drug discovery, confirming their relevance as a bridge between preclinical and clinical studies.
人类精确切片肝脏:研究酒精相关肝病的潜在平台
酒精相关性肝病(ALD)包括一系列病理状况,在临床和临床前研究层面都很复杂。尽管 ALD 给全球带来了沉重的负担,但目前仍缺乏有效的治疗方法,而且死亡率很高。新型疗法开发不成功的原因之一是实验研究受阻于在体外重现这种多因素疾病所面临的挑战,包括肝毒性、脂质代谢受损、纤维化和炎症细胞因子风暴的贡献,这些因素是患者 ALD 发病机制的关键驱动因素,也是药物开发的主要目标。在这里,我们介绍了培养人精确切片肝脏切片(PCLS)以复制 ALD 关键疾病过程的独特特性。PCLS 由人类肝脏标本制备而成,用乙醇单独或与脂肪酸和脂多糖(FA + LPS)联合处理长达 5 天,以诱导与 ALD 相关的肝毒性、炎症和纤维化事件。酒精损伤会诱导肝细胞死亡,而加入脂肪酸和脂多糖后肝细胞死亡更为明显。这种混合物显示,与严重 ALD 中观察到的典型炎症反应相关的细胞因子明显增加,有趣的是,仅酒精就表现出了不同的效果。在切片中也观察到了嗜碱性细胞活化,并在切片制备过程中进行了研究。这些结果证明了这种器官模型的多功能性,可用于研究酒精诱导的肝损伤和 ALD 进展所涉及的不同途径,并强调了 PCLS 在药物发现方面的适用性,证实了其作为临床前研究和临床研究之间桥梁的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Molecular Sciences
International Journal of Molecular Sciences Chemistry-Organic Chemistry
CiteScore
8.10
自引率
10.70%
发文量
13472
审稿时长
17.49 days
期刊介绍: The International Journal of Molecular Sciences (ISSN 1422-0067) provides an advanced forum for chemistry, molecular physics (chemical physics and physical chemistry) and molecular biology. It publishes research articles, reviews, communications and short notes. Our aim is to encourage scientists to publish their theoretical and experimental results in as much detail as possible. Therefore, there is no restriction on the length of the papers or the number of electronics supplementary files. For articles with computational results, the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material (including animated pictures, videos, interactive Excel sheets, software executables and others).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信