Investigation on photonic crystal nanobeam cavity based on mixed diamond–circular holes

IF 2.7
Jing Bin, Kerui Feng, Shang Ma, Ke Liu, Yong Cheng, Jing Chen, Qifa Liu
{"title":"Investigation on photonic crystal nanobeam cavity based on mixed diamond–circular holes","authors":"Jing Bin, Kerui Feng, Shang Ma, Ke Liu, Yong Cheng, Jing Chen, Qifa Liu","doi":"10.1063/10.0023847","DOIUrl":null,"url":null,"abstract":"A photonic crystal nanobeam cavity (M-PCNC) with a structure incorporating a mixture of diamond-shaped and circular air holes is proposed. The performance of the cavity is simulated and studied theoretically. Using the finite-difference time-domain method, the parameters of the M-PCNC, including cavity thickness and width, lattice constant, and radii and numbers of holes, are optimized, with the quality factor Q and mode volume Vm as performance indicators. Mutual modulation of the lattice constant and hole radius enable the proposed M-PCNC to realize outstanding performance. The optimized cavity possesses a high quality factor Q = 1.45 × 105 and an ultra-small mode volume Vm = 0.01(λ/n) [Zeng et al., Opt Lett 2023:48;3981–3984] in the telecommunications wavelength range. Light can be progressively squeezed in both the propagation direction and the perpendicular in-plane direction by a series of interlocked anti-slots and slots in the diamond-shaped hole structure. Thereby, the energy can be confined within a small mode volume to achieve an ultra-high Q/Vm ratio.","PeriodicalId":87330,"journal":{"name":"Nanotechnology and Precision Engineering","volume":"81 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology and Precision Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/10.0023847","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A photonic crystal nanobeam cavity (M-PCNC) with a structure incorporating a mixture of diamond-shaped and circular air holes is proposed. The performance of the cavity is simulated and studied theoretically. Using the finite-difference time-domain method, the parameters of the M-PCNC, including cavity thickness and width, lattice constant, and radii and numbers of holes, are optimized, with the quality factor Q and mode volume Vm as performance indicators. Mutual modulation of the lattice constant and hole radius enable the proposed M-PCNC to realize outstanding performance. The optimized cavity possesses a high quality factor Q = 1.45 × 105 and an ultra-small mode volume Vm = 0.01(λ/n) [Zeng et al., Opt Lett 2023:48;3981–3984] in the telecommunications wavelength range. Light can be progressively squeezed in both the propagation direction and the perpendicular in-plane direction by a series of interlocked anti-slots and slots in the diamond-shaped hole structure. Thereby, the energy can be confined within a small mode volume to achieve an ultra-high Q/Vm ratio.
基于混合金刚石圆孔的光子晶体纳米光束腔研究
本文提出了一种光子晶体纳米光束腔(M-PCNC),其结构包含菱形和圆形气孔的混合物。对该空腔的性能进行了模拟和理论研究。利用有限差分时域法优化了 M-PCNC 的参数,包括腔体厚度和宽度、晶格常数、孔的半径和数量,并以品质因数 Q 和模式体积 Vm 作为性能指标。晶格常数和孔半径的相互调制使所提出的 M-PCNC 实现了出色的性能。优化后的腔体在电信波长范围内具有很高的品质因数 Q = 1.45 × 105 和超小的模式体积 Vm = 0.01(λ/n) [Zeng 等,Opt Lett 2023:48;3981-3984]。通过菱形孔结构中一系列互锁的反槽和槽,光可以在传播方向和垂直面内方向上逐渐被挤压。因此,能量可以被限制在很小的模式体积内,从而实现超高的 Q/Vm 比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信