Recurrent neural networks for the problem of improving numerical meteorological forecasts

А.Yu. Doroshenko, Kushnirenko R.V.
{"title":"Recurrent neural networks for the problem of improving numerical meteorological forecasts","authors":"А.Yu. Doroshenko, Kushnirenko R.V.","doi":"10.15407/pp2023.04.090","DOIUrl":null,"url":null,"abstract":"This paper briefly describes examples of how deep learning can be applied to geoscientific problems, as well as the main difficulties that arise when scientists apply this technique to the problems of meteorological forecasting. This paper aims at comparing the two most popular types of recurrent neural network architectures, namely the long short-term memory network and the gated recurrent unit when they are used to improve 2m temperature forecast results obtained using numerical hydrodynamic methods of meteorological forecasting. An efficiency comparison of architectures of recurrent neural networks was performed using the root-mean-square error. It is shown that all models with gated recurrent units are more efficient than models with long short-term memory. Thus the best architecture of recurrent neural networks for solving the problem of improving numerical meteorological forecasts has been revealed.","PeriodicalId":313885,"journal":{"name":"PROBLEMS IN PROGRAMMING","volume":"63 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PROBLEMS IN PROGRAMMING","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/pp2023.04.090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper briefly describes examples of how deep learning can be applied to geoscientific problems, as well as the main difficulties that arise when scientists apply this technique to the problems of meteorological forecasting. This paper aims at comparing the two most popular types of recurrent neural network architectures, namely the long short-term memory network and the gated recurrent unit when they are used to improve 2m temperature forecast results obtained using numerical hydrodynamic methods of meteorological forecasting. An efficiency comparison of architectures of recurrent neural networks was performed using the root-mean-square error. It is shown that all models with gated recurrent units are more efficient than models with long short-term memory. Thus the best architecture of recurrent neural networks for solving the problem of improving numerical meteorological forecasts has been revealed.
用于改进数值气象预报问题的循环神经网络
本文简要介绍了如何将深度学习应用于地球科学问题的实例,以及科学家将该技术应用于气象预报问题时遇到的主要困难。本文旨在比较两种最流行的递归神经网络架构,即长短期记忆网络和门控递归单元,当它们被用于改善利用气象预报的数值流体力学方法获得的 2 米气温预报结果时。使用均方根误差对递归神经网络的结构进行了效率比较。结果表明,所有具有门控递归单元的模型都比具有长短期记忆的模型更有效。从而揭示了解决改进数值气象预报问题的最佳递归神经网络结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信