Regular Double p-Algebras: A Converse to a Katriňák Theorem and Applications

Pub Date : 2023-12-01 DOI:10.1515/ms-2023-0099
J. M. Cornejo, Michael Kinyon, H. P. Sankappanavar
{"title":"Regular Double p-Algebras: A Converse to a Katriňák Theorem and Applications","authors":"J. M. Cornejo, Michael Kinyon, H. P. Sankappanavar","doi":"10.1515/ms-2023-0099","DOIUrl":null,"url":null,"abstract":"ABSTRACT In 1973, Katriňák proved that regular double p-algebras can be regarded as (regular) double Heyting algebras by ingeniously constructing binary terms for the Heyting implication and its dual in terms of pseudocomplement and its dual. In this paper, we prove a converse to Katriňák’s theorem, in the sense that in the variety ℝDℙℂℍ \\[\\mathbb{R}\\mathbb{D}\\mathbb{P}\\mathbb{C}\\mathbb{H}\\] of regular dually pseudocomplemented Heyting algebras, the implication operation → satisfies Katriňák’s formula. As applications of this result together with the above-mentioned Katriňák’s theorem, we show that the varieties ℝDBLℙ \\[\\mathbb{R}\\mathbb{D}\\mathbb{B}\\mathbb{L}\\mathbb{P}\\] , ℝDℙℂℍ \\[\\mathbb{R}\\mathbb{D}\\mathbb{P}\\mathbb{C}\\mathbb{H}\\] , ℝℙℂℍd \\[\\mathbb{R}\\mathbb{P}\\mathbb{C}{{\\mathbb{H}}^{d}}\\] and ℝDBLℍ \\[\\mathbb{R}\\mathbb{D}\\mathbb{B}\\mathbb{L}\\mathbb{H}\\] of regular double p-algebras, regular dually pseudocomplemented Heyting algebras, regular pseudocomplemented dual Heyting algebras, and regular double Heyting algebras, respectively, are term-equivalent to each other and also that the varieties ℝDMℙ \\[\\mathbb{R}\\mathbb{D}\\mathbb{M}\\mathbb{P}\\] , ℝDMℍ \\[\\mathbb{R}\\mathbb{D}\\mathbb{M}\\mathbb{H}\\] , ℝDMDBLℍ \\[\\mathbb{R}\\mathbb{D}\\mathbb{M}\\mathbb{D}\\mathbb{B}\\mathbb{L}\\mathbb{H}\\] , ℝDMDBLℙ \\[\\mathbb{R}\\mathbb{D}\\mathbb{M}\\mathbb{D}\\mathbb{B}\\mathbb{L}\\mathbb{P}\\] of regular De Morgan p-algebras, regular De Morgan Heyting algebras, regular De Morgan double Heyting algebras, and regular De Morgan double p-algebras, respectively, are also term-equivalent to each other. From these results and recent results of Adams, Sankappanavar and Vaz de Carvalho on varieties of regular double p-algebras and regular pseudocomplemented De Morgan algebras, we deduce that the lattices of subvarieties of all these varieties have cardinality 2ℵ0 \\[{{2}^{{{\\aleph }_{0}}}}\\] . We then define new logics, ℛDPCℋ \\[\\mathcal{R}\\mathcal{D}\\mathcal{P}\\mathcal{C}\\mathcal{H}\\] , ℛPCℋd \\[\\mathcal{R}\\mathcal{P}\\mathcal{C}{{\\mathcal{H}}^{d}}\\] and ℛDℳℋ \\[\\mathcal{R}\\mathcal{D}\\mathcal{M}\\mathcal{H}\\] , and show that they are algebraizable with ℝDℙℂℍ \\[\\mathbb{R}\\mathbb{D}\\mathbb{P}\\mathbb{C}\\mathbb{H}\\] , ℝℙℂℍd \\[\\mathbb{R}\\mathbb{P}\\mathbb{C}{{\\mathbb{H}}^{d}}\\] and ℝDMℍ \\[\\mathbb{R}\\mathbb{D}\\mathbb{M}\\mathbb{H}\\] , respectively, as their equivalent algebraic semantics. It is also deduced that the lattices of extensions of all of the above mentioned logics have cardinality 2ℵ0 \\[{{2}^{{{\\aleph }_{0}}}}\\] .","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ms-2023-0099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT In 1973, Katriňák proved that regular double p-algebras can be regarded as (regular) double Heyting algebras by ingeniously constructing binary terms for the Heyting implication and its dual in terms of pseudocomplement and its dual. In this paper, we prove a converse to Katriňák’s theorem, in the sense that in the variety ℝDℙℂℍ \[\mathbb{R}\mathbb{D}\mathbb{P}\mathbb{C}\mathbb{H}\] of regular dually pseudocomplemented Heyting algebras, the implication operation → satisfies Katriňák’s formula. As applications of this result together with the above-mentioned Katriňák’s theorem, we show that the varieties ℝDBLℙ \[\mathbb{R}\mathbb{D}\mathbb{B}\mathbb{L}\mathbb{P}\] , ℝDℙℂℍ \[\mathbb{R}\mathbb{D}\mathbb{P}\mathbb{C}\mathbb{H}\] , ℝℙℂℍd \[\mathbb{R}\mathbb{P}\mathbb{C}{{\mathbb{H}}^{d}}\] and ℝDBLℍ \[\mathbb{R}\mathbb{D}\mathbb{B}\mathbb{L}\mathbb{H}\] of regular double p-algebras, regular dually pseudocomplemented Heyting algebras, regular pseudocomplemented dual Heyting algebras, and regular double Heyting algebras, respectively, are term-equivalent to each other and also that the varieties ℝDMℙ \[\mathbb{R}\mathbb{D}\mathbb{M}\mathbb{P}\] , ℝDMℍ \[\mathbb{R}\mathbb{D}\mathbb{M}\mathbb{H}\] , ℝDMDBLℍ \[\mathbb{R}\mathbb{D}\mathbb{M}\mathbb{D}\mathbb{B}\mathbb{L}\mathbb{H}\] , ℝDMDBLℙ \[\mathbb{R}\mathbb{D}\mathbb{M}\mathbb{D}\mathbb{B}\mathbb{L}\mathbb{P}\] of regular De Morgan p-algebras, regular De Morgan Heyting algebras, regular De Morgan double Heyting algebras, and regular De Morgan double p-algebras, respectively, are also term-equivalent to each other. From these results and recent results of Adams, Sankappanavar and Vaz de Carvalho on varieties of regular double p-algebras and regular pseudocomplemented De Morgan algebras, we deduce that the lattices of subvarieties of all these varieties have cardinality 2ℵ0 \[{{2}^{{{\aleph }_{0}}}}\] . We then define new logics, ℛDPCℋ \[\mathcal{R}\mathcal{D}\mathcal{P}\mathcal{C}\mathcal{H}\] , ℛPCℋd \[\mathcal{R}\mathcal{P}\mathcal{C}{{\mathcal{H}}^{d}}\] and ℛDℳℋ \[\mathcal{R}\mathcal{D}\mathcal{M}\mathcal{H}\] , and show that they are algebraizable with ℝDℙℂℍ \[\mathbb{R}\mathbb{D}\mathbb{P}\mathbb{C}\mathbb{H}\] , ℝℙℂℍd \[\mathbb{R}\mathbb{P}\mathbb{C}{{\mathbb{H}}^{d}}\] and ℝDMℍ \[\mathbb{R}\mathbb{D}\mathbb{M}\mathbb{H}\] , respectively, as their equivalent algebraic semantics. It is also deduced that the lattices of extensions of all of the above mentioned logics have cardinality 2ℵ0 \[{{2}^{{{\aleph }_{0}}}}\] .
分享
查看原文
正则双 p 矩阵:卡特里纳克定理的逆定理及其应用
摘要 1973 年,卡特里纳克通过巧妙地用伪补数及其对偶来构造海廷蕴涵及其对偶的二元项,证明了正则双 p 格拉斯可视为(正则)双海廷格拉斯。在本文中,我们证明了卡特里纳克定理的逆定理,即在正则双伪补齐海廷代数的ℝDℙℂℍ \[\mathbb{R}mathbb{D}\mathbb{P}mathbb{C}\mathbb{H}\]中,蕴涵运算 → 满足卡特里纳克公式。作为这一结果与上述卡特里纳克定理的应用、我们证明了ℝDBLℙ \[\mathbb{R}\mathbb{D}\mathbb{B}\mathbb{L}\mathbb{P}\] , ℝDℙℂℍ \[\mathbb{R}\mathbb{D}\mathbb{P}\mathbb{C}\mathbb{H}\] 、ℝℙℂℍd \[\mathbb{R}\mathbb{P}\mathbb{C}{{mathbb{H}}^{d}\] and ℝDBLℍ \[\mathbb{R}\mathbb{D}\mathbb{B}\mathbb{L}\mathbb{H}}] of regular double p-algebras、正则双伪互补海廷布拉斯、正则伪互补双海廷布拉斯和正则双海廷布拉斯、分别是项等价的,而且ℝDMℙ \[\mathbb{R}\mathbb{D}\mathbb{M}\mathbb{P}\] 、ℝDMℍ \[\mathbb{R}\mathbb{D}\mathbb{M}\mathbb{H}\] , ℝDMDBLℍ \[\mathbb{R}\mathbb{D}\mathbb{M}\mathbb{D}\mathbb{B}\mathbb{L}\mathbb{H}\] 、ℝDMDBLℙ \[\mathbb{R}\mathbb{D}\mathbb{M}\mathbb{D}\mathbb{B}\mathbb{L}\mathbb{P}\] of regular De Morgan p-algebras、regular De Morgan Heyting algebras、regular De Morgan double Heyting algebras 和 regular De Morgan double p-algebras,也是项等价的。根据这些结果,以及亚当斯、桑卡帕纳瓦尔和瓦兹-德-卡瓦略最近关于正则双 p-格拉斯和正则伪补德-摩根格拉斯的研究成果,我们推导出所有这些变体的子变体的晶格都有 cardinality 2ℵ0 \[{{2}^{{{\aleph }_{0}}}}\] 。然后我们定义新的逻辑,ℛDPCℋ \[\mathcal{R}\mathcal{D}\mathcal{P}\mathcal{C}\mathcal{H}\] 、ℛPCℋd \[\mathcal{R}\mathcal{P}\mathcal{C}{\mathcal{H}}^{d}\] and ℛDℳℋ \[\mathcal{R}\mathcal{D}\mathcal{M}\mathcal{H}\] 、并证明它们与ℝDℙℂℍ \ [\mathbb{R}\mathbb{D}\mathbb{P}\mathbb{C}\mathbb{H}\] 是可代数的、和ℝDMℂℍd \[(mathbb{R}\mathbb{D}\mathbb{M}\mathbb{H}^{d}}\],分别作为它们等价的代数语义。我们还可以推导出,上述所有逻辑的扩展晶格都有 cardinality 2ℵ0 \[{{2}^{{\aleph }_{0}}}}] 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信