Simple model of power generation in thermoradiative devices including realistic nonradiative processes

APL Energy Pub Date : 2023-12-01 DOI:10.1063/5.0181036
I. Vurgaftman, J. R. Meyer
{"title":"Simple model of power generation in thermoradiative devices including realistic nonradiative processes","authors":"I. Vurgaftman, J. R. Meyer","doi":"10.1063/5.0181036","DOIUrl":null,"url":null,"abstract":"We formulate a simple model for the power densities generated by thermoradiative devices based on narrow-gap semiconductors. Our model is more realistic than previous treatments because it includes the effects of both Auger (impact ionization) and Shockley–Read–Hall (SRH) processes on the generated power. For known materials and based on optimal values for the energy gap and operating bias, maximum possible power densities are estimated in the presence of strong nonradiative processes. In particular, we derive best-case numerical projections for thermoradiative devices based on III-V type-II superlattices and bulk HgCdTe operating at practical temperatures and having a range of SRH lifetimes. Devices with strong Auger suppression and configured in nonplanar architectures with limited geometric fill factor can in principle attain power densities per unit active area approaching 10 W/m2. However, practical limitations will more likely constrain the generation density to <1 W/m2, which is at least two orders of magnitude lower than for a typical solar cell.","PeriodicalId":486383,"journal":{"name":"APL Energy","volume":"168 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Energy","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.1063/5.0181036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We formulate a simple model for the power densities generated by thermoradiative devices based on narrow-gap semiconductors. Our model is more realistic than previous treatments because it includes the effects of both Auger (impact ionization) and Shockley–Read–Hall (SRH) processes on the generated power. For known materials and based on optimal values for the energy gap and operating bias, maximum possible power densities are estimated in the presence of strong nonradiative processes. In particular, we derive best-case numerical projections for thermoradiative devices based on III-V type-II superlattices and bulk HgCdTe operating at practical temperatures and having a range of SRH lifetimes. Devices with strong Auger suppression and configured in nonplanar architectures with limited geometric fill factor can in principle attain power densities per unit active area approaching 10 W/m2. However, practical limitations will more likely constrain the generation density to <1 W/m2, which is at least two orders of magnitude lower than for a typical solar cell.
热辐射装置发电的简单模型,包括现实的非辐射过程
我们为基于窄隙半导体的热辐射设备产生的功率密度制定了一个简单的模型。我们的模型比以往的方法更符合实际,因为它包含了奥格(撞击电离)和肖克利-雷德-霍尔(SRH)过程对产生功率的影响。对于已知材料,并基于能隙和工作偏置的最佳值,我们估算了在存在强非辐射过程时可能的最大功率密度。特别是,我们推导出了基于 III-VII 型超晶格和块状 HgCdTe 的热辐射器件的最佳情况数值预测,这些器件在实际温度下工作,并具有一定范围的 SRH 寿命。具有较强欧杰抑制能力的器件,配置在几何填充因子有限的非平面结构中,原则上可以达到接近 10 W/m2 的单位有效面积功率密度。然而,实际限制更有可能将发电密度限制在小于 1 W/m2 的范围内,这比典型的太阳能电池至少低两个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信