Paleo-uplift forced regional sedimentary evolution: A case study of the Late Triassic in the southeastern Sichuan Basin, South China

IF 4.2 Q2 ENERGY & FUELS
{"title":"Paleo-uplift forced regional sedimentary evolution: A case study of the Late Triassic in the southeastern Sichuan Basin, South China","authors":"","doi":"10.1016/j.petlm.2023.12.003","DOIUrl":null,"url":null,"abstract":"<div><p>The sedimentary environment of the Upper Triassic in the southeastern Sichuan Basin is obviously controlled by Luzhou paleo-uplift (LPU). However, the influence of paleo-uplift on the sedimentary patterns of the initial stages of this period in the southeastern Sichuan Basin has not yet been clear, which has plagued oil and gas exploration and development. This study shows that there is a marine sedimentary sequence, which is considered to be the first member of Xujiahe Formation (T<sub>3</sub>X<sup>1</sup>) in the southeastern Sichuan Basin. The development of LPU resulted in the sedimentary differences between the eastern and western Sichuan Basin recording T<sub>3</sub>X<sup>1</sup> and controlled the regional sedimentary pattern. The western part is dominated by marine sediments, but the eastern paleo-uplift area is dominated by continental sedimentation in the early stage of T<sub>3</sub>X<sup>1</sup>, and it begins to transform into a marine sedimentary environment consistent with the whole basin in the late stage of the period recorded by the Xujiahe Formation. The evidences are as follows: (1) time series: based on the cyclostratigraphy analysis of Xindianzi section and Well D2, in the southeastern Sichuan Basin, the period of sedimentation of the Xujiahe Formation is about 5.9 Ma, which is basically consistent with the Qilixia section, eastern Sichuan basin, where the Xujiahe Formation is widely considered to be relatively complete; (2) distribution and evolution of palaeobiology: based on analysis of abundance evolution of major spore-pollen, many land plant fossils are preserved in the lower part of T<sub>3</sub>X<sup>1</sup>, indicates the sedimentary environment of continental facies. In the upper part of T<sub>3</sub>X<sup>1</sup>, the fossil of terrestrial plants decreased, while the fossil of marine and tidal environment appeared, this means that it was affected by the sea water in the late stages of T<sub>3</sub>X<sup>1</sup>; (3) geochemistry: calculate the salinity of water from element indicates that the uplift area is continental sedimentary environment in the early stage of T<sub>3</sub>X<sup>1</sup>, while the central and western areas of the basin are marine sedimentary environment. Until the late stage of T<sub>3</sub>X<sup>1</sup>, the southeast of the basin gradually turns into marine sedimentary environment, consisting with the whole basin; (4) types of kerogen: type Ⅲ kerogen representing continental facies was developed in the early stage of T<sub>3</sub>X<sup>1</sup> in the uplift area, and type Ⅱ kerogen, representing marine facies, was developed in the late stage; while type Ⅱ kerogen was developed in the central and western regions of the basin as a whole in T<sub>3</sub>X<sup>1</sup>. This study is of great significance for understanding of both stratigraphic division and sedimentary evolution providing theoretical support for the exploration and development of oil and gas.</p></div>","PeriodicalId":37433,"journal":{"name":"Petroleum","volume":"10 3","pages":"Pages 462-473"},"PeriodicalIF":4.2000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405656123000780/pdfft?md5=365eba9cfae0d325def6b2f52a3c63c5&pid=1-s2.0-S2405656123000780-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405656123000780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The sedimentary environment of the Upper Triassic in the southeastern Sichuan Basin is obviously controlled by Luzhou paleo-uplift (LPU). However, the influence of paleo-uplift on the sedimentary patterns of the initial stages of this period in the southeastern Sichuan Basin has not yet been clear, which has plagued oil and gas exploration and development. This study shows that there is a marine sedimentary sequence, which is considered to be the first member of Xujiahe Formation (T3X1) in the southeastern Sichuan Basin. The development of LPU resulted in the sedimentary differences between the eastern and western Sichuan Basin recording T3X1 and controlled the regional sedimentary pattern. The western part is dominated by marine sediments, but the eastern paleo-uplift area is dominated by continental sedimentation in the early stage of T3X1, and it begins to transform into a marine sedimentary environment consistent with the whole basin in the late stage of the period recorded by the Xujiahe Formation. The evidences are as follows: (1) time series: based on the cyclostratigraphy analysis of Xindianzi section and Well D2, in the southeastern Sichuan Basin, the period of sedimentation of the Xujiahe Formation is about 5.9 Ma, which is basically consistent with the Qilixia section, eastern Sichuan basin, where the Xujiahe Formation is widely considered to be relatively complete; (2) distribution and evolution of palaeobiology: based on analysis of abundance evolution of major spore-pollen, many land plant fossils are preserved in the lower part of T3X1, indicates the sedimentary environment of continental facies. In the upper part of T3X1, the fossil of terrestrial plants decreased, while the fossil of marine and tidal environment appeared, this means that it was affected by the sea water in the late stages of T3X1; (3) geochemistry: calculate the salinity of water from element indicates that the uplift area is continental sedimentary environment in the early stage of T3X1, while the central and western areas of the basin are marine sedimentary environment. Until the late stage of T3X1, the southeast of the basin gradually turns into marine sedimentary environment, consisting with the whole basin; (4) types of kerogen: type Ⅲ kerogen representing continental facies was developed in the early stage of T3X1 in the uplift area, and type Ⅱ kerogen, representing marine facies, was developed in the late stage; while type Ⅱ kerogen was developed in the central and western regions of the basin as a whole in T3X1. This study is of great significance for understanding of both stratigraphic division and sedimentary evolution providing theoretical support for the exploration and development of oil and gas.

古隆起迫使区域沉积演化:华南四川盆地东南部晚三叠世案例研究
四川盆地东南部上三叠统沉积环境明显受泸州古隆起控制。然而,古隆起对四川盆地东南部该时期初期沉积格局的影响尚未明确,这一直困扰着油气勘探开发。本研究表明,四川盆地东南部有一海相沉积序列,被认为是徐家河地层(T3X1)的第一层。LPU 的发育导致了四川盆地东部和西部记录 T3X1 的沉积差异,并控制了区域沉积格局。西部以海相沉积为主,东部古隆起区在T3X1早期以大陆沉积为主,到徐家河地层记录的晚期开始转变为与整个盆地一致的海相沉积环境。证据如下(1)时间序列:根据新店子剖面和 D2 井的旋回地层学分析,四川盆地东南部徐家河地层的沉积期约为 5.9 Ma,与四川盆地东南部徐家河地层的沉积期基本一致。9Ma,这与四川盆地东部七里峡断面基本一致,普遍认为四川盆地东部徐家河地层相对完整;(2)古生物分布与演化:根据主要孢粉丰度演化分析,T3X1下部保存有大量陆生植物化石,表明其沉积环境为大陆面。在 T3X1 上部,陆生植物化石减少,而海洋和潮汐环境化石出现,说明 T3X1 晚期受到海水的影响;(3)地球化学:从元素水盐度计算,T3X1 早期隆起区为大陆沉积环境,盆地中西部为海洋沉积环境。至T3X1晚期,盆地东南部逐渐转为海相沉积环境,与整个盆地组成海相沉积环境;(4)角质类型:T3X1早期隆起区发育代表大陆相的Ⅲ型角质,晚期发育代表海相的Ⅱ型角质,T3X1盆地中西部整体发育Ⅱ型角质。该研究对了解地层划分和沉积演化具有重要意义,为油气勘探开发提供了理论支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Petroleum
Petroleum Earth and Planetary Sciences-Geology
CiteScore
9.20
自引率
0.00%
发文量
76
审稿时长
124 days
期刊介绍: Examples of appropriate topical areas that will be considered include the following: 1.comprehensive research on oil and gas reservoir (reservoir geology): -geological basis of oil and gas reservoirs -reservoir geochemistry -reservoir formation mechanism -reservoir identification methods and techniques 2.kinetics of oil and gas basins and analyses of potential oil and gas resources: -fine description factors of hydrocarbon accumulation -mechanism analysis on recovery and dynamic accumulation process -relationship between accumulation factors and the accumulation process -analysis of oil and gas potential resource 3.theories and methods for complex reservoir geophysical prospecting: -geophysical basis of deep geologic structures and background of hydrocarbon occurrence -geophysical prediction of deep and complex reservoirs -physical test analyses and numerical simulations of reservoir rocks -anisotropic medium seismic imaging theory and new technology for multiwave seismic exploration -o theories and methods for reservoir fluid geophysical identification and prediction 4.theories, methods, technology, and design for complex reservoir development: -reservoir percolation theory and application technology -field development theories and methods -theory and technology for enhancing recovery efficiency 5.working liquid for oil and gas wells and reservoir protection technology: -working chemicals and mechanics for oil and gas wells -reservoir protection technology 6.new techniques and technologies for oil and gas drilling and production: -under-balanced drilling/gas drilling -special-track well drilling -cementing and completion of oil and gas wells -engineering safety applications for oil and gas wells -new technology of fracture acidizing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信