{"title":"Paleo-uplift forced regional sedimentary evolution: A case study of the Late Triassic in the southeastern Sichuan Basin, South China","authors":"","doi":"10.1016/j.petlm.2023.12.003","DOIUrl":null,"url":null,"abstract":"<div><p>The sedimentary environment of the Upper Triassic in the southeastern Sichuan Basin is obviously controlled by Luzhou paleo-uplift (LPU). However, the influence of paleo-uplift on the sedimentary patterns of the initial stages of this period in the southeastern Sichuan Basin has not yet been clear, which has plagued oil and gas exploration and development. This study shows that there is a marine sedimentary sequence, which is considered to be the first member of Xujiahe Formation (T<sub>3</sub>X<sup>1</sup>) in the southeastern Sichuan Basin. The development of LPU resulted in the sedimentary differences between the eastern and western Sichuan Basin recording T<sub>3</sub>X<sup>1</sup> and controlled the regional sedimentary pattern. The western part is dominated by marine sediments, but the eastern paleo-uplift area is dominated by continental sedimentation in the early stage of T<sub>3</sub>X<sup>1</sup>, and it begins to transform into a marine sedimentary environment consistent with the whole basin in the late stage of the period recorded by the Xujiahe Formation. The evidences are as follows: (1) time series: based on the cyclostratigraphy analysis of Xindianzi section and Well D2, in the southeastern Sichuan Basin, the period of sedimentation of the Xujiahe Formation is about 5.9 Ma, which is basically consistent with the Qilixia section, eastern Sichuan basin, where the Xujiahe Formation is widely considered to be relatively complete; (2) distribution and evolution of palaeobiology: based on analysis of abundance evolution of major spore-pollen, many land plant fossils are preserved in the lower part of T<sub>3</sub>X<sup>1</sup>, indicates the sedimentary environment of continental facies. In the upper part of T<sub>3</sub>X<sup>1</sup>, the fossil of terrestrial plants decreased, while the fossil of marine and tidal environment appeared, this means that it was affected by the sea water in the late stages of T<sub>3</sub>X<sup>1</sup>; (3) geochemistry: calculate the salinity of water from element indicates that the uplift area is continental sedimentary environment in the early stage of T<sub>3</sub>X<sup>1</sup>, while the central and western areas of the basin are marine sedimentary environment. Until the late stage of T<sub>3</sub>X<sup>1</sup>, the southeast of the basin gradually turns into marine sedimentary environment, consisting with the whole basin; (4) types of kerogen: type Ⅲ kerogen representing continental facies was developed in the early stage of T<sub>3</sub>X<sup>1</sup> in the uplift area, and type Ⅱ kerogen, representing marine facies, was developed in the late stage; while type Ⅱ kerogen was developed in the central and western regions of the basin as a whole in T<sub>3</sub>X<sup>1</sup>. This study is of great significance for understanding of both stratigraphic division and sedimentary evolution providing theoretical support for the exploration and development of oil and gas.</p></div>","PeriodicalId":37433,"journal":{"name":"Petroleum","volume":"10 3","pages":"Pages 462-473"},"PeriodicalIF":4.2000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405656123000780/pdfft?md5=365eba9cfae0d325def6b2f52a3c63c5&pid=1-s2.0-S2405656123000780-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405656123000780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The sedimentary environment of the Upper Triassic in the southeastern Sichuan Basin is obviously controlled by Luzhou paleo-uplift (LPU). However, the influence of paleo-uplift on the sedimentary patterns of the initial stages of this period in the southeastern Sichuan Basin has not yet been clear, which has plagued oil and gas exploration and development. This study shows that there is a marine sedimentary sequence, which is considered to be the first member of Xujiahe Formation (T3X1) in the southeastern Sichuan Basin. The development of LPU resulted in the sedimentary differences between the eastern and western Sichuan Basin recording T3X1 and controlled the regional sedimentary pattern. The western part is dominated by marine sediments, but the eastern paleo-uplift area is dominated by continental sedimentation in the early stage of T3X1, and it begins to transform into a marine sedimentary environment consistent with the whole basin in the late stage of the period recorded by the Xujiahe Formation. The evidences are as follows: (1) time series: based on the cyclostratigraphy analysis of Xindianzi section and Well D2, in the southeastern Sichuan Basin, the period of sedimentation of the Xujiahe Formation is about 5.9 Ma, which is basically consistent with the Qilixia section, eastern Sichuan basin, where the Xujiahe Formation is widely considered to be relatively complete; (2) distribution and evolution of palaeobiology: based on analysis of abundance evolution of major spore-pollen, many land plant fossils are preserved in the lower part of T3X1, indicates the sedimentary environment of continental facies. In the upper part of T3X1, the fossil of terrestrial plants decreased, while the fossil of marine and tidal environment appeared, this means that it was affected by the sea water in the late stages of T3X1; (3) geochemistry: calculate the salinity of water from element indicates that the uplift area is continental sedimentary environment in the early stage of T3X1, while the central and western areas of the basin are marine sedimentary environment. Until the late stage of T3X1, the southeast of the basin gradually turns into marine sedimentary environment, consisting with the whole basin; (4) types of kerogen: type Ⅲ kerogen representing continental facies was developed in the early stage of T3X1 in the uplift area, and type Ⅱ kerogen, representing marine facies, was developed in the late stage; while type Ⅱ kerogen was developed in the central and western regions of the basin as a whole in T3X1. This study is of great significance for understanding of both stratigraphic division and sedimentary evolution providing theoretical support for the exploration and development of oil and gas.
期刊介绍:
Examples of appropriate topical areas that will be considered include the following: 1.comprehensive research on oil and gas reservoir (reservoir geology): -geological basis of oil and gas reservoirs -reservoir geochemistry -reservoir formation mechanism -reservoir identification methods and techniques 2.kinetics of oil and gas basins and analyses of potential oil and gas resources: -fine description factors of hydrocarbon accumulation -mechanism analysis on recovery and dynamic accumulation process -relationship between accumulation factors and the accumulation process -analysis of oil and gas potential resource 3.theories and methods for complex reservoir geophysical prospecting: -geophysical basis of deep geologic structures and background of hydrocarbon occurrence -geophysical prediction of deep and complex reservoirs -physical test analyses and numerical simulations of reservoir rocks -anisotropic medium seismic imaging theory and new technology for multiwave seismic exploration -o theories and methods for reservoir fluid geophysical identification and prediction 4.theories, methods, technology, and design for complex reservoir development: -reservoir percolation theory and application technology -field development theories and methods -theory and technology for enhancing recovery efficiency 5.working liquid for oil and gas wells and reservoir protection technology: -working chemicals and mechanics for oil and gas wells -reservoir protection technology 6.new techniques and technologies for oil and gas drilling and production: -under-balanced drilling/gas drilling -special-track well drilling -cementing and completion of oil and gas wells -engineering safety applications for oil and gas wells -new technology of fracture acidizing