An Attention-Based Odometry Framework for Multisensory Unmanned Ground Vehicles (UGVs)

IF 4.4 2区 地球科学 Q1 REMOTE SENSING
Drones Pub Date : 2023-12-09 DOI:10.3390/drones7120699
Zhiyao Xiao, Guobao Zhang
{"title":"An Attention-Based Odometry Framework for Multisensory Unmanned Ground Vehicles (UGVs)","authors":"Zhiyao Xiao, Guobao Zhang","doi":"10.3390/drones7120699","DOIUrl":null,"url":null,"abstract":"Recently, deep learning methods and multisensory fusion have been applied to address odometry challenges in unmanned ground vehicles (UGVs). In this paper, we propose an end-to-end visual-lidar-inertial odometry framework to enhance the accuracy of pose estimation. Grayscale images, 3D point clouds, and inertial data are used as inputs to overcome the limitations of a single sensor. Convolutional neural network (CNN) and recurrent neural network (RNN) are employed as encoders for different sensor modalities. In contrast to previous multisensory odometry methods, our framework introduces a novel attention-based fusion module that remaps feature vectors to adapt to various scenes. Evaluations on the Karlsruhe Institute of Technology and Toyota Technological Institute at Chicago (KITTI) odometry benchmark demonstrate the effectiveness of our framework.","PeriodicalId":36448,"journal":{"name":"Drones","volume":"565 ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drones","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/drones7120699","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, deep learning methods and multisensory fusion have been applied to address odometry challenges in unmanned ground vehicles (UGVs). In this paper, we propose an end-to-end visual-lidar-inertial odometry framework to enhance the accuracy of pose estimation. Grayscale images, 3D point clouds, and inertial data are used as inputs to overcome the limitations of a single sensor. Convolutional neural network (CNN) and recurrent neural network (RNN) are employed as encoders for different sensor modalities. In contrast to previous multisensory odometry methods, our framework introduces a novel attention-based fusion module that remaps feature vectors to adapt to various scenes. Evaluations on the Karlsruhe Institute of Technology and Toyota Technological Institute at Chicago (KITTI) odometry benchmark demonstrate the effectiveness of our framework.
基于注意力的多感知无人地面飞行器(UGV)测距框架
最近,深度学习方法和多感官融合被应用于解决无人地面车辆(UGV)的里程测量难题。在本文中,我们提出了一种端到端的视觉-激光雷达-惯性里程测量框架,以提高姿态估计的准确性。灰度图像、三维点云和惯性数据被用作输入,以克服单一传感器的局限性。卷积神经网络(CNN)和递归神经网络(RNN)被用作不同传感器模式的编码器。与以往的多感官里程测量方法不同,我们的框架引入了一种新颖的基于注意力的融合模块,可重新映射特征向量以适应各种场景。卡尔斯鲁厄理工学院和芝加哥丰田技术学院(KITTI)的里程测量基准评估证明了我们框架的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Drones
Drones Engineering-Aerospace Engineering
CiteScore
5.60
自引率
18.80%
发文量
331
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信