An Optimal Eighth-Order One-Parameter Single-Root Finder: Chaotic Dynamics and Stability Analysis

IF 1.9 4区 数学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Wenshuo Li, Xiaofeng Wang
{"title":"An Optimal Eighth-Order One-Parameter Single-Root Finder: Chaotic Dynamics and Stability Analysis","authors":"Wenshuo Li, Xiaofeng Wang","doi":"10.1142/s0218127423501766","DOIUrl":null,"url":null,"abstract":"In this paper, we focus on a class of optimal eighth-order iterative methods, initially proposed by Sharma et al., whose second step can choose any fourth-order iterative method. By selecting the first two steps as an optimal fourth-order iterative method, we derive an optimal eighth-order one-parameter iterative method, which can solve nonlinear systems. Employing fractal theory, we investigate the dynamic behavior of rational operators associated with the iterative method through the Scaling theorem and Möbius transformation. Subsequently, we conduct a comprehensive study of the chaotic dynamics and stability of the iterative method. Our analysis involves the examination of strange fixed points and their stability, critical points, and the parameter spaces generated on the complex plane with critical points as initial points. We utilize these findings to intuitively select parameter values from the figures. Furthermore, we generate dynamical planes for the selected parameter values and ultimately determine the range of unstable parameter values, thus obtaining the range of stable parameter values. The bifurcation diagram shows the influence of parameter selection on the iteration sequence. In addition, by drawing attractive basins, it can be seen that this iterative method is superior to the same-order iterative method in terms of convergence speed and average iterations. Finally, the matrix sign function, nonlinear equation and nonlinear system are solved by this iterative method, which shows the applicability of this iterative method.","PeriodicalId":50337,"journal":{"name":"International Journal of Bifurcation and Chaos","volume":"91 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bifurcation and Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0218127423501766","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we focus on a class of optimal eighth-order iterative methods, initially proposed by Sharma et al., whose second step can choose any fourth-order iterative method. By selecting the first two steps as an optimal fourth-order iterative method, we derive an optimal eighth-order one-parameter iterative method, which can solve nonlinear systems. Employing fractal theory, we investigate the dynamic behavior of rational operators associated with the iterative method through the Scaling theorem and Möbius transformation. Subsequently, we conduct a comprehensive study of the chaotic dynamics and stability of the iterative method. Our analysis involves the examination of strange fixed points and their stability, critical points, and the parameter spaces generated on the complex plane with critical points as initial points. We utilize these findings to intuitively select parameter values from the figures. Furthermore, we generate dynamical planes for the selected parameter values and ultimately determine the range of unstable parameter values, thus obtaining the range of stable parameter values. The bifurcation diagram shows the influence of parameter selection on the iteration sequence. In addition, by drawing attractive basins, it can be seen that this iterative method is superior to the same-order iterative method in terms of convergence speed and average iterations. Finally, the matrix sign function, nonlinear equation and nonlinear system are solved by this iterative method, which shows the applicability of this iterative method.
最优八阶单参数单根寻根器:混沌动力学和稳定性分析
本文主要研究一类最优八阶迭代法,该方法最初由 Sharma 等人提出,其第二步可以选择任何四阶迭代法。通过选择前两步作为最优四阶迭代法,我们推导出一种最优八阶单参数迭代法,它可以求解非线性系统。利用分形理论,我们通过缩放定理和莫比乌斯变换研究了与迭代法相关的有理算子的动态行为。随后,我们对迭代法的混沌动力学和稳定性进行了全面研究。我们的分析包括研究奇异定点及其稳定性、临界点以及以临界点为初始点在复平面上生成的参数空间。我们利用这些发现,从图中直观地选择参数值。此外,我们还为所选参数值生成动力学平面,最终确定不稳定参数值的范围,从而获得稳定参数值的范围。分岔图显示了参数选择对迭代序列的影响。此外,通过绘制吸引力盆地,可以看出该迭代法在收敛速度和平均迭代次数方面优于同阶迭代法。最后,该迭代法求解了矩阵符号函数、非线性方程和非线性系统,表明了该迭代法的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Bifurcation and Chaos
International Journal of Bifurcation and Chaos 数学-数学跨学科应用
CiteScore
4.10
自引率
13.60%
发文量
237
审稿时长
2-4 weeks
期刊介绍: The International Journal of Bifurcation and Chaos is widely regarded as a leading journal in the exciting fields of chaos theory and nonlinear science. Represented by an international editorial board comprising top researchers from a wide variety of disciplines, it is setting high standards in scientific and production quality. The journal has been reputedly acclaimed by the scientific community around the world, and has featured many important papers by leading researchers from various areas of applied sciences and engineering. The discipline of chaos theory has created a universal paradigm, a scientific parlance, and a mathematical tool for grappling with complex dynamical phenomena. In every field of applied sciences (astronomy, atmospheric sciences, biology, chemistry, economics, geophysics, life and medical sciences, physics, social sciences, ecology, etc.) and engineering (aerospace, chemical, electronic, civil, computer, information, mechanical, software, telecommunication, etc.), the local and global manifestations of chaos and bifurcation have burst forth in an unprecedented universality, linking scientists heretofore unfamiliar with one another''s fields, and offering an opportunity to reshape our grasp of reality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信