Fateh Ullah, M. Tarkhan, Zina Fredj, Yi Su, Tianjun Wang, Mohamad Sawan
{"title":"A stable undoped low-voltage memristor cell based on Titania (TiOx)","authors":"Fateh Ullah, M. Tarkhan, Zina Fredj, Yi Su, Tianjun Wang, Mohamad Sawan","doi":"10.1088/2632-959X/ad1413","DOIUrl":null,"url":null,"abstract":"An asymmetric memristive device fabricated with a titania (TiOx)-based switching layer deposited through atomic layer deposition with a thickness of ∼37 nm was investigated. X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy coupled with energy-dispersive x-ray spectroscopy were employed for device structural characterization. A unipolar resistive switching behavior (both at positive and negative voltages) was observed through the memristor’s current–voltage characteristics. A remarkably smaller forming voltage (from the top Pt electrode to the grounded Au electrode) of 0.46 V was achieved, while it approached (positive bias from the Au electrode and holding Pt electrode as grounded) 0.25 V, which is a much smaller forming voltage than has ever been reported for titanium-based oxides without doping. The retention and endurance characterization over 2000 switching cycles were satisfactory without degradation.","PeriodicalId":484840,"journal":{"name":"Nano express","volume":"46 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano express","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.1088/2632-959X/ad1413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
An asymmetric memristive device fabricated with a titania (TiOx)-based switching layer deposited through atomic layer deposition with a thickness of ∼37 nm was investigated. X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy coupled with energy-dispersive x-ray spectroscopy were employed for device structural characterization. A unipolar resistive switching behavior (both at positive and negative voltages) was observed through the memristor’s current–voltage characteristics. A remarkably smaller forming voltage (from the top Pt electrode to the grounded Au electrode) of 0.46 V was achieved, while it approached (positive bias from the Au electrode and holding Pt electrode as grounded) 0.25 V, which is a much smaller forming voltage than has ever been reported for titanium-based oxides without doping. The retention and endurance characterization over 2000 switching cycles were satisfactory without degradation.