Bifurcation Solutions to the Templator Model in Chemical Self-Replication

IF 1.9 4区 数学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Qian Cao, Xiongxiong Bao
{"title":"Bifurcation Solutions to the Templator Model in Chemical Self-Replication","authors":"Qian Cao, Xiongxiong Bao","doi":"10.1142/s0218127423501742","DOIUrl":null,"url":null,"abstract":"In this paper, we are concerned with a diffusive templator model in chemical self-replication, which describes the process of an individual molecule duplicating itself. Firstly, the stability of non-negative constant equilibrium solution is introduced. Then the existence of Hopf bifurcation is proved. Particularly, the stability and the direction of Hopf bifurcation for the spatially homogeneous model are discussed. Furthermore, by space decomposition and implicit function theorem, it is shown that the system may undergo a steady-state bifurcation with a two-dimensional kernel. Finally, several numerical simulations are completed to demonstrate the theoretical results.","PeriodicalId":50337,"journal":{"name":"International Journal of Bifurcation and Chaos","volume":"6 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bifurcation and Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0218127423501742","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we are concerned with a diffusive templator model in chemical self-replication, which describes the process of an individual molecule duplicating itself. Firstly, the stability of non-negative constant equilibrium solution is introduced. Then the existence of Hopf bifurcation is proved. Particularly, the stability and the direction of Hopf bifurcation for the spatially homogeneous model are discussed. Furthermore, by space decomposition and implicit function theorem, it is shown that the system may undergo a steady-state bifurcation with a two-dimensional kernel. Finally, several numerical simulations are completed to demonstrate the theoretical results.
化学自我复制中模板模型的分岔解
本文关注化学自我复制中的扩散模板模型,该模型描述了单个分子自我复制的过程。首先,介绍了非负常数平衡解的稳定性。然后证明了霍普夫分岔的存在。特别是讨论了空间均质模型的稳定性和霍普夫分岔的方向。此外,通过空间分解和隐函数定理,证明了系统可能发生具有二维内核的稳态分岔。最后,完成了几个数值模拟来证明理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Bifurcation and Chaos
International Journal of Bifurcation and Chaos 数学-数学跨学科应用
CiteScore
4.10
自引率
13.60%
发文量
237
审稿时长
2-4 weeks
期刊介绍: The International Journal of Bifurcation and Chaos is widely regarded as a leading journal in the exciting fields of chaos theory and nonlinear science. Represented by an international editorial board comprising top researchers from a wide variety of disciplines, it is setting high standards in scientific and production quality. The journal has been reputedly acclaimed by the scientific community around the world, and has featured many important papers by leading researchers from various areas of applied sciences and engineering. The discipline of chaos theory has created a universal paradigm, a scientific parlance, and a mathematical tool for grappling with complex dynamical phenomena. In every field of applied sciences (astronomy, atmospheric sciences, biology, chemistry, economics, geophysics, life and medical sciences, physics, social sciences, ecology, etc.) and engineering (aerospace, chemical, electronic, civil, computer, information, mechanical, software, telecommunication, etc.), the local and global manifestations of chaos and bifurcation have burst forth in an unprecedented universality, linking scientists heretofore unfamiliar with one another''s fields, and offering an opportunity to reshape our grasp of reality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信