Drought stress-induced modification of morpho-anatomical and yield attributes of mung bean associated with the application of silicon and Moringa leaf extract
Moazzma Anwar, Asma Hanif, Zhanwu Gao, Adnan Rasheed, Sobia Shahzad, Abdul Haseeb, Mah Gul, J. M. Al-Khayri, M. I. Aldaej, Muhammad N. Sattar, Adel Abdel-Sabour Rezk, M. I. Almaghasla, W. F. Shehata, T. A. Shalaby
{"title":"Drought stress-induced modification of morpho-anatomical and yield attributes of mung bean associated with the application of silicon and Moringa leaf extract","authors":"Moazzma Anwar, Asma Hanif, Zhanwu Gao, Adnan Rasheed, Sobia Shahzad, Abdul Haseeb, Mah Gul, J. M. Al-Khayri, M. I. Aldaej, Muhammad N. Sattar, Adel Abdel-Sabour Rezk, M. I. Almaghasla, W. F. Shehata, T. A. Shalaby","doi":"10.15835/nbha51413370","DOIUrl":null,"url":null,"abstract":"Mung bean (Vigna radiata) is the rich source of fiber and essential nutrients. They play a vital role in sustainable agriculture due to their ability to fix nitrogen in the soil and enhance soil fertility. Drought is characterized by limited water resources and severe arid climatic conditions, notably impair crop growth and yield. In the current experiment, two genotypes, Azri-M 2006 and NM-92, were studied against drought stress that was applied as 2 days and 4 days irrigation gap per week. Foliar application of magnesium-silicate (20 ppm and 30 ppm concentrations) and Moringa leaf extract (30% v/v solution) was applied as treatments. The results from the experiment morphology anatomical and yield components were recorded according to the prescribed methods. The result revealed that drought stress reduced the growth of plant. Foliar application of 30 ppm silicon against drought stress showed a highly significant (p<0.001) result compared with control group. Morphology parameters, including shoot and root length, shoot and root fresh weight, root dry weight, leaf area, leaf number, the anatomical structure included (stem epidermis, cortex, and stem vascular bundles,) and also yield components (pod length, and seed numbers). In contrast, MLE (30%) showed a significant impact (p<0.01) on leaf lamina thickness (Leaf anatomical parameters; midrib xylem and phloem, number of stomata on the adaxial and abaxial surface) and yield components included (100-grain weight, grains weight per plant, and numbers of pods,). The overall impact of 30 ppm Si was 39.9% more positive on Azri-M2006 than the NM-92 against the drought stress. The 30-ppm silicon and 30% MLE showed 90% similar results in all studied parameters. This study confirms that 30% MLE could be recommended to farmers to improve productivity under arid conditions than the silicon.","PeriodicalId":19364,"journal":{"name":"Notulae Botanicae Horti Agrobotanici Cluj-napoca","volume":"2 9","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Notulae Botanicae Horti Agrobotanici Cluj-napoca","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.15835/nbha51413370","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Mung bean (Vigna radiata) is the rich source of fiber and essential nutrients. They play a vital role in sustainable agriculture due to their ability to fix nitrogen in the soil and enhance soil fertility. Drought is characterized by limited water resources and severe arid climatic conditions, notably impair crop growth and yield. In the current experiment, two genotypes, Azri-M 2006 and NM-92, were studied against drought stress that was applied as 2 days and 4 days irrigation gap per week. Foliar application of magnesium-silicate (20 ppm and 30 ppm concentrations) and Moringa leaf extract (30% v/v solution) was applied as treatments. The results from the experiment morphology anatomical and yield components were recorded according to the prescribed methods. The result revealed that drought stress reduced the growth of plant. Foliar application of 30 ppm silicon against drought stress showed a highly significant (p<0.001) result compared with control group. Morphology parameters, including shoot and root length, shoot and root fresh weight, root dry weight, leaf area, leaf number, the anatomical structure included (stem epidermis, cortex, and stem vascular bundles,) and also yield components (pod length, and seed numbers). In contrast, MLE (30%) showed a significant impact (p<0.01) on leaf lamina thickness (Leaf anatomical parameters; midrib xylem and phloem, number of stomata on the adaxial and abaxial surface) and yield components included (100-grain weight, grains weight per plant, and numbers of pods,). The overall impact of 30 ppm Si was 39.9% more positive on Azri-M2006 than the NM-92 against the drought stress. The 30-ppm silicon and 30% MLE showed 90% similar results in all studied parameters. This study confirms that 30% MLE could be recommended to farmers to improve productivity under arid conditions than the silicon.
期刊介绍:
Notulae Botanicae Horti Agrobotanici Cluj-Napoca is a peer-reviewed biannual journal aimed at disseminating significant research and original papers, critical reviews and short reviews. The subjects refer on plant biodiversity, genetics and plant breeding, development of new methodologies that can be of interest to a wide audience of plant scientists in all areas of plant biology, agriculture, horticulture and forestry. The journal encourages authors to frame their research questions and discuss their results in terms of the major questions of plant sciences, thereby maximizing the impact and value of their research, and thus in favor of spreading their studies outcome. The papers must be of potential interest to a significant number of scientists and, if specific to a local situation, must be relevant to a wide body of knowledge in life sciences. Articles should make a significant contribution to the advancement of knowledge or toward a better understanding of existing biological and agricultural concepts. An international Editorial Board advises the journal. The total content of the journal may be used for educational, non-profit purposes without regard to copyright. The distribution of the material is encouraged with the condition that the authors and the source (Notulae Botanicae Horti Agrobotanici Cluj-Napoca or JCR abbrev. title Not Bot Horti Agrobo) are mentioned.