Parameters Estimation of the Exponentiated Chen Distribution Based on Upper Record Values

IF 0.9 Q3 STATISTICS & PROBABILITY
Farhad Yousaf, Sajid Ali, Ismail Shah, Saba Riaz
{"title":"Parameters Estimation of the Exponentiated Chen Distribution Based on Upper Record Values","authors":"Farhad Yousaf, Sajid Ali, Ismail Shah, Saba Riaz","doi":"10.13052/jrss0974-8024.16110","DOIUrl":null,"url":null,"abstract":"This article discusses the Bayesian and frequentist inferences for the exponentiated Chen distribution assuming upper record values. Due to unavailability of the compact form of marginal posterior distributions, a Markov Chain Monte Carlo algorithm is designed to compute the posterior summaries. Prediction of future record values under Bayesian and frequentist methods is also discussed mathematically and numerically. Further, a sensitivity analysis to assess the effect of prior on the estimated parameters is also a part of this study. Besides the simulation studies, the importance of the present study is illustrated with the help of a real data example. It is noted that the Bayes estimates outperform the frequentist inference.","PeriodicalId":42526,"journal":{"name":"Journal of Reliability and Statistical Studies","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Reliability and Statistical Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/jrss0974-8024.16110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

This article discusses the Bayesian and frequentist inferences for the exponentiated Chen distribution assuming upper record values. Due to unavailability of the compact form of marginal posterior distributions, a Markov Chain Monte Carlo algorithm is designed to compute the posterior summaries. Prediction of future record values under Bayesian and frequentist methods is also discussed mathematically and numerically. Further, a sensitivity analysis to assess the effect of prior on the estimated parameters is also a part of this study. Besides the simulation studies, the importance of the present study is illustrated with the help of a real data example. It is noted that the Bayes estimates outperform the frequentist inference.
基于最高记录值的陈氏指数分布参数估计
本文讨论了假设上记录值的指数化陈分布的贝叶斯推论和频数推论。由于无法获得边际后验分布的紧凑形式,本文设计了一种马尔可夫链蒙特卡洛算法来计算后验摘要。此外,还对贝叶斯法和频数法预测未来记录值进行了数学和数值讨论。此外,本研究还进行了敏感性分析,以评估先验值对估计参数的影响。除了模拟研究外,本研究还借助一个真实数据实例来说明其重要性。结果表明,贝叶斯估计优于频数推断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
12.50%
发文量
24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信