{"title":"Differential privacy and SPARQL","authors":"C. Buil-Aranda, Jorge Lobo, Federico Olmedo","doi":"10.3233/sw-233474","DOIUrl":null,"url":null,"abstract":"Differential privacy is a framework that provides formal tools to develop algorithms to access databases and answer statistical queries with quantifiable accuracy and privacy guarantees. The notions of differential privacy are defined independently of the data model and the query language at steak. Most differential privacy results have been obtained on aggregation queries such as counting or finding maximum or average values, and on grouping queries over aggregations such as the creation of histograms. So far, the data model used by the framework research has typically been the relational model and the query language SQL. However, effective realizations of differential privacy for SQL queries that required joins had been limited. This has imposed severe restrictions on applying differential privacy in RDF knowledge graphs and SPARQL queries. By the simple nature of RDF data, most useful queries accessing RDF graphs will require intensive use of joins. Recently, new differential privacy techniques have been developed that can be applied to many types of joins in SQL with reasonable results. This opened the question of whether these new results carry over to RDF and SPARQL. In this paper we provide a positive answer to this question by presenting an algorithm that can answer counting queries over a large class of SPARQL queries that guarantees differential privacy, if the RDF graph is accompanied with semantic information about its structure. We have implemented our algorithm and conducted several experiments, showing the feasibility of our approach for large graph databases. Our aim has been to present an approach that can be used as a stepping stone towards extensions and other realizations of differential privacy for SPARQL and RDF.","PeriodicalId":48694,"journal":{"name":"Semantic Web","volume":"8 2","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semantic Web","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/sw-233474","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1
Abstract
Differential privacy is a framework that provides formal tools to develop algorithms to access databases and answer statistical queries with quantifiable accuracy and privacy guarantees. The notions of differential privacy are defined independently of the data model and the query language at steak. Most differential privacy results have been obtained on aggregation queries such as counting or finding maximum or average values, and on grouping queries over aggregations such as the creation of histograms. So far, the data model used by the framework research has typically been the relational model and the query language SQL. However, effective realizations of differential privacy for SQL queries that required joins had been limited. This has imposed severe restrictions on applying differential privacy in RDF knowledge graphs and SPARQL queries. By the simple nature of RDF data, most useful queries accessing RDF graphs will require intensive use of joins. Recently, new differential privacy techniques have been developed that can be applied to many types of joins in SQL with reasonable results. This opened the question of whether these new results carry over to RDF and SPARQL. In this paper we provide a positive answer to this question by presenting an algorithm that can answer counting queries over a large class of SPARQL queries that guarantees differential privacy, if the RDF graph is accompanied with semantic information about its structure. We have implemented our algorithm and conducted several experiments, showing the feasibility of our approach for large graph databases. Our aim has been to present an approach that can be used as a stepping stone towards extensions and other realizations of differential privacy for SPARQL and RDF.
Semantic WebCOMPUTER SCIENCE, ARTIFICIAL INTELLIGENCEC-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
8.30
自引率
6.70%
发文量
68
期刊介绍:
The journal Semantic Web – Interoperability, Usability, Applicability brings together researchers from various fields which share the vision and need for more effective and meaningful ways to share information across agents and services on the future internet and elsewhere. As such, Semantic Web technologies shall support the seamless integration of data, on-the-fly composition and interoperation of Web services, as well as more intuitive search engines. The semantics – or meaning – of information, however, cannot be defined without a context, which makes personalization, trust, and provenance core topics for Semantic Web research. New retrieval paradigms, user interfaces, and visualization techniques have to unleash the power of the Semantic Web and at the same time hide its complexity from the user. Based on this vision, the journal welcomes contributions ranging from theoretical and foundational research over methods and tools to descriptions of concrete ontologies and applications in all areas. We especially welcome papers which add a social, spatial, and temporal dimension to Semantic Web research, as well as application-oriented papers making use of formal semantics.