Enhancing android application security: A novel approach using DroidXGB for malware detection based on permission analysis

IF 1.5 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Pawan Kumar, Sukhdip Singh
{"title":"Enhancing android application security: A novel approach using DroidXGB for malware detection based on permission analysis","authors":"Pawan Kumar, Sukhdip Singh","doi":"10.1002/spy2.361","DOIUrl":null,"url":null,"abstract":"The prevalence of malicious Android applications targeting the platform has introduced significant challenges in the realm of security testing. Traditional solutions have proven insufficient in handling the growing number of malicious apps, resulting in persistent exposure of Android smartphones to evolving forms of malware. This study investigates the potential of extreme gradient boosting (XGB) in identifying complex and high‐dimensional malicious permissions. By leveraging attribute combination and selection techniques, XGBoost demonstrates promising capabilities in this area. However, enhancing the XGBoost model presents a formidable challenge. To overcome this, This research employs adaptive grey wolf optimization (AGWO) for hyper‐parameter tuning. AGWO utilizes continuous values to represent the position and movement of the grey wolf, enabling XGBoost to search for optimal hyper‐parameter values in a continuous space. The proposed approach, DroidXGB, utilizes XGBoost and AGWO to analyze permissions and identify malware Android applications. It aims to address security vulnerabilities and compares its performance with baseline algorithms and state‐of‐the‐art methods using four benchmark datasets. The results showcase DroidXGB's impressive accuracy of 98.39%, outperforming other existing methods and significantly enhancing Android malware detection and security testing capabilities.","PeriodicalId":29939,"journal":{"name":"Security and Privacy","volume":"8 3","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Security and Privacy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/spy2.361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The prevalence of malicious Android applications targeting the platform has introduced significant challenges in the realm of security testing. Traditional solutions have proven insufficient in handling the growing number of malicious apps, resulting in persistent exposure of Android smartphones to evolving forms of malware. This study investigates the potential of extreme gradient boosting (XGB) in identifying complex and high‐dimensional malicious permissions. By leveraging attribute combination and selection techniques, XGBoost demonstrates promising capabilities in this area. However, enhancing the XGBoost model presents a formidable challenge. To overcome this, This research employs adaptive grey wolf optimization (AGWO) for hyper‐parameter tuning. AGWO utilizes continuous values to represent the position and movement of the grey wolf, enabling XGBoost to search for optimal hyper‐parameter values in a continuous space. The proposed approach, DroidXGB, utilizes XGBoost and AGWO to analyze permissions and identify malware Android applications. It aims to address security vulnerabilities and compares its performance with baseline algorithms and state‐of‐the‐art methods using four benchmark datasets. The results showcase DroidXGB's impressive accuracy of 98.39%, outperforming other existing methods and significantly enhancing Android malware detection and security testing capabilities.
增强安卓应用程序的安全性:基于权限分析使用 DroidXGB 检测恶意软件的新方法
针对安卓平台的恶意安卓应用程序的盛行给安全测试领域带来了巨大挑战。事实证明,传统的解决方案不足以应对日益增多的恶意应用程序,导致安卓智能手机持续暴露在不断演变的恶意软件面前。本研究探讨了极端梯度提升(XGB)在识别复杂和高维恶意权限方面的潜力。通过利用属性组合和选择技术,XGBoost 在这一领域展现出了良好的能力。然而,增强 XGBoost 模型是一项艰巨的挑战。为了克服这一难题,本研究采用了自适应灰狼优化(AGWO)技术来调整超参数。AGWO 利用连续值来表示灰狼的位置和移动,使 XGBoost 能够在连续空间中搜索最佳超参数值。所提出的方法 DroidXGB 利用 XGBoost 和 AGWO 分析权限并识别恶意 Android 应用程序。该方法旨在解决安全漏洞,并利用四个基准数据集将其性能与基准算法和最先进的方法进行了比较。结果表明,DroidXGB 的准确率高达 98.39%,优于其他现有方法,显著提高了安卓恶意软件检测和安全测试能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
5.30%
发文量
80
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信