Chenyu Liang, Hangjun Zhang, Yancong Xu, Libin Rong
{"title":"Bifurcation Analysis of a New Aquatic Ecological Model with Aggregation Effect and Harvesting","authors":"Chenyu Liang, Hangjun Zhang, Yancong Xu, Libin Rong","doi":"10.1142/s0218127423501808","DOIUrl":null,"url":null,"abstract":"In this paper, we investigated the dynamics of the interaction between Microcystis aeruginosa and filter-feeding fish in a new aquatic ecological model and considered the effects of aggregation and harvesting and focused on studying the critical threshold conditions through the analysis of saddle-node bifurcation, Hopf bifurcation, and Bogdanov–Takens bifurcation. We also conducted numerical simulations to illustrate our findings and provided biological interpretations. The results obtained indicate that the aggregation effect or harvesting can disrupt the coexistence of Microcystis aeruginosa and filter-feeding fish. The filter-feeding fish population may go extinct while the Microcystis aeruginosa population could survive. We identified the importance of finding an appropriate timing for harvesting Microcystis aeruginosa in order to promote the growth of the filter-feeding fish population. This optimal timing may be influenced by the carrying capacity of Microcystis aeruginosa. Taken together, our study sheds light on the dynamics of Microcystis aeruginosa and filter-feeding fish in an aquatic ecosystem, highlighting the critical role of aggregation, harvesting, and timing in determining the coexistence and survival of these species.","PeriodicalId":50337,"journal":{"name":"International Journal of Bifurcation and Chaos","volume":"72 4","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bifurcation and Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0218127423501808","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we investigated the dynamics of the interaction between Microcystis aeruginosa and filter-feeding fish in a new aquatic ecological model and considered the effects of aggregation and harvesting and focused on studying the critical threshold conditions through the analysis of saddle-node bifurcation, Hopf bifurcation, and Bogdanov–Takens bifurcation. We also conducted numerical simulations to illustrate our findings and provided biological interpretations. The results obtained indicate that the aggregation effect or harvesting can disrupt the coexistence of Microcystis aeruginosa and filter-feeding fish. The filter-feeding fish population may go extinct while the Microcystis aeruginosa population could survive. We identified the importance of finding an appropriate timing for harvesting Microcystis aeruginosa in order to promote the growth of the filter-feeding fish population. This optimal timing may be influenced by the carrying capacity of Microcystis aeruginosa. Taken together, our study sheds light on the dynamics of Microcystis aeruginosa and filter-feeding fish in an aquatic ecosystem, highlighting the critical role of aggregation, harvesting, and timing in determining the coexistence and survival of these species.
期刊介绍:
The International Journal of Bifurcation and Chaos is widely regarded as a leading journal in the exciting fields of chaos theory and nonlinear science. Represented by an international editorial board comprising top researchers from a wide variety of disciplines, it is setting high standards in scientific and production quality. The journal has been reputedly acclaimed by the scientific community around the world, and has featured many important papers by leading researchers from various areas of applied sciences and engineering.
The discipline of chaos theory has created a universal paradigm, a scientific parlance, and a mathematical tool for grappling with complex dynamical phenomena. In every field of applied sciences (astronomy, atmospheric sciences, biology, chemistry, economics, geophysics, life and medical sciences, physics, social sciences, ecology, etc.) and engineering (aerospace, chemical, electronic, civil, computer, information, mechanical, software, telecommunication, etc.), the local and global manifestations of chaos and bifurcation have burst forth in an unprecedented universality, linking scientists heretofore unfamiliar with one another''s fields, and offering an opportunity to reshape our grasp of reality.