{"title":"Simple Time-Periodic Delay Can Support Complex Dynamics","authors":"Mingshan Li, Naiming Xie, Xiaoliang Zhou","doi":"10.1142/s0218127423501754","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the complex dynamics of a mapping derived from a differential equation with simple time-periodic delay. Firstly, we calculate the truncated normal form of 1:1 resonance of the mapping at a degenerate fixed point and obtain an approximating system of the mapping by using Picard iteration. By analyzing the approximate system, we find that the mapping will undergo a 1:1 resonance at the degenerate fixed point. Secondly, the qualitative property and the stability of the degenerate fixed point are determined, which provide a new view to understand the dynamic of differential equation with simple time-periodic delay. However, the approximate system does not have the versal unfolding of the Bogdanov–Takens singularity of codimension 2. These phenomena show that simple time-periodic delay can support complex dynamics. Finally, a numerical simulation is carried out to verify the analytic results.","PeriodicalId":50337,"journal":{"name":"International Journal of Bifurcation and Chaos","volume":"105 s1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bifurcation and Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0218127423501754","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we investigate the complex dynamics of a mapping derived from a differential equation with simple time-periodic delay. Firstly, we calculate the truncated normal form of 1:1 resonance of the mapping at a degenerate fixed point and obtain an approximating system of the mapping by using Picard iteration. By analyzing the approximate system, we find that the mapping will undergo a 1:1 resonance at the degenerate fixed point. Secondly, the qualitative property and the stability of the degenerate fixed point are determined, which provide a new view to understand the dynamic of differential equation with simple time-periodic delay. However, the approximate system does not have the versal unfolding of the Bogdanov–Takens singularity of codimension 2. These phenomena show that simple time-periodic delay can support complex dynamics. Finally, a numerical simulation is carried out to verify the analytic results.
期刊介绍:
The International Journal of Bifurcation and Chaos is widely regarded as a leading journal in the exciting fields of chaos theory and nonlinear science. Represented by an international editorial board comprising top researchers from a wide variety of disciplines, it is setting high standards in scientific and production quality. The journal has been reputedly acclaimed by the scientific community around the world, and has featured many important papers by leading researchers from various areas of applied sciences and engineering.
The discipline of chaos theory has created a universal paradigm, a scientific parlance, and a mathematical tool for grappling with complex dynamical phenomena. In every field of applied sciences (astronomy, atmospheric sciences, biology, chemistry, economics, geophysics, life and medical sciences, physics, social sciences, ecology, etc.) and engineering (aerospace, chemical, electronic, civil, computer, information, mechanical, software, telecommunication, etc.), the local and global manifestations of chaos and bifurcation have burst forth in an unprecedented universality, linking scientists heretofore unfamiliar with one another''s fields, and offering an opportunity to reshape our grasp of reality.