Effect of Different Macronutrient Supply Levels on the Drought Tolerance of Rainfed Grass Based on Biomass Production, Water Use Efficiency and Macroelement Content
P. Ragályi, Anita Szabó, M. Rékási, P. Csathó, Péter Csontos
{"title":"Effect of Different Macronutrient Supply Levels on the Drought Tolerance of Rainfed Grass Based on Biomass Production, Water Use Efficiency and Macroelement Content","authors":"P. Ragályi, Anita Szabó, M. Rékási, P. Csathó, Péter Csontos","doi":"10.3390/horticulturae9121337","DOIUrl":null,"url":null,"abstract":"Water shortage, one of the main limiting factors for plant growth and development, can be alleviated by an adequate nutrient supply. The effect of different nitrogen (N), phosphorus (P) and potassium (K) supply levels and their combinations was examined in different rainfall supply periods (wet, normal, dry) on a grass sward in a field experiment. Dry and fresh aboveground biomass production were primarily increased by the N–rainfall supply interaction, from 0.739 to 6.51 and from 1.84 to 21.8 t ha−1, respectively, but the P–rainfall supply and N–P interactions and K treatment all had significant effects. Dry matter content was primarily influenced by the N–rainfall supply interaction, increasing in response to N in dry periods and declining in wet periods. Water use efficiency (WUE) was increased by the N–rainfall supply interaction from 28.3 to 127 kg ha−1 mm−1, but the N–P interaction had a similarly strong effect, and K treatment increased it in the dry period. The N, P and K contents of the aboveground biomass were increased by treatment with the corresponding element, but were also influenced by rainfall supply. The increase in biomass, mainly due to N treatment, caused the dilution of the P and K contents in grass in treatments poorly supplied with P and K. Biomass production and WUE were significantly improved up to a dose of 200 kg ha−1 year−1 of N, up to a supply level of 153 mg kg−1 of P2O5, and 279 mg kg−1 of K2O measured in the soil. Treating grass with the N, P and K macroelements may effectively increase biomass production and water use efficiency, but above a certain level their application is unnecessary.","PeriodicalId":13034,"journal":{"name":"Horticulturae","volume":"96 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticulturae","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/horticulturae9121337","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HORTICULTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Water shortage, one of the main limiting factors for plant growth and development, can be alleviated by an adequate nutrient supply. The effect of different nitrogen (N), phosphorus (P) and potassium (K) supply levels and their combinations was examined in different rainfall supply periods (wet, normal, dry) on a grass sward in a field experiment. Dry and fresh aboveground biomass production were primarily increased by the N–rainfall supply interaction, from 0.739 to 6.51 and from 1.84 to 21.8 t ha−1, respectively, but the P–rainfall supply and N–P interactions and K treatment all had significant effects. Dry matter content was primarily influenced by the N–rainfall supply interaction, increasing in response to N in dry periods and declining in wet periods. Water use efficiency (WUE) was increased by the N–rainfall supply interaction from 28.3 to 127 kg ha−1 mm−1, but the N–P interaction had a similarly strong effect, and K treatment increased it in the dry period. The N, P and K contents of the aboveground biomass were increased by treatment with the corresponding element, but were also influenced by rainfall supply. The increase in biomass, mainly due to N treatment, caused the dilution of the P and K contents in grass in treatments poorly supplied with P and K. Biomass production and WUE were significantly improved up to a dose of 200 kg ha−1 year−1 of N, up to a supply level of 153 mg kg−1 of P2O5, and 279 mg kg−1 of K2O measured in the soil. Treating grass with the N, P and K macroelements may effectively increase biomass production and water use efficiency, but above a certain level their application is unnecessary.
期刊介绍:
Horticulturae (ISSN 2311-7524) is an international, multidisciplinary, peer-reviewed, open access journal focusing on all areas and aspects of temperate to tropical horticulture. It publishes original empirical and theoretical research articles, short communications, reviews, and opinion articles. We intend to encourage scientists to publish and communicate their results concerning all branches of horticulture in a timely manner and in an open venue, after being evaluated by the journal editors and randomly selected independent expert reviewers, so that all articles will never be judged in relation to how much they confirm or criticize the opinions of other researchers.