Kaio G. de Almeida Mesquita, Luan P. de Holanda Barros, Francisco Moraes de Oliveira Neto
{"title":"Analysis of spatial–temporal validation patterns in Fortaleza’s public transport systems: a data mining approach","authors":"Kaio G. de Almeida Mesquita, Luan P. de Holanda Barros, Francisco Moraes de Oliveira Neto","doi":"10.1017/dap.2023.39","DOIUrl":null,"url":null,"abstract":"Abstract Understanding the spatio-temporal patterns of users’ travel behavior on public transport (PT) systems is essential for more assertive transit planning. With this in mind, the aim of this article is to diagnose the spatial and temporal travel patterns of users of Fortaleza’s PT network, which is a trunk-feeder network whose fares are charged by a tap-on system. To this end, 20 databases were used, including global positioning system, user registration, and PT smart card data from November 2018, prior to the pandemic. The data set was processed and organized into a database with a relational model and an Extraction, Transformation, and Loading process. A data mining approach based on Machine Learning models was applied to evaluate travel patterns. As a result, it was observed that users’ first daily use has a higher percentage of spatial and temporal patterns when compared to their last daily use. In addition, users rarely show spatial and temporal patterns at the same time.","PeriodicalId":93427,"journal":{"name":"Data & policy","volume":"66 10","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data & policy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/dap.2023.39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PUBLIC ADMINISTRATION","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Understanding the spatio-temporal patterns of users’ travel behavior on public transport (PT) systems is essential for more assertive transit planning. With this in mind, the aim of this article is to diagnose the spatial and temporal travel patterns of users of Fortaleza’s PT network, which is a trunk-feeder network whose fares are charged by a tap-on system. To this end, 20 databases were used, including global positioning system, user registration, and PT smart card data from November 2018, prior to the pandemic. The data set was processed and organized into a database with a relational model and an Extraction, Transformation, and Loading process. A data mining approach based on Machine Learning models was applied to evaluate travel patterns. As a result, it was observed that users’ first daily use has a higher percentage of spatial and temporal patterns when compared to their last daily use. In addition, users rarely show spatial and temporal patterns at the same time.