Investigating the Role of Stator Slot Indents in Minimizing Flooded Motor Fluid Damping Loss

IF 2.1 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Machines Pub Date : 2023-12-14 DOI:10.3390/machines11121088
Didem Tekgun, B. Tekgun
{"title":"Investigating the Role of Stator Slot Indents in Minimizing Flooded Motor Fluid Damping Loss","authors":"Didem Tekgun, B. Tekgun","doi":"10.3390/machines11121088","DOIUrl":null,"url":null,"abstract":"This research examines how fluid damping loss affects the operation of a two-pole, 5.5 HP (4 kW) induction machine (IM) within the context of different slot opening configurations developed for downhole water pump applications. Since these motors operate with their cavities filled with fluid, the variations in fluid viscosity and density, compared to air, result in the occurrence of damping losses. Furthermore, this loss can be attributed to the motor’s stator and rotor surface geometry, as the liquid within the motor cavity moves unrestrictedly within the motor housing. This study involves the examination of the damping loss in a 24-slot IM under different stator slot indentations. The investigation utilizes computational fluid dynamics (CFD) finite element analysis (FEA) and is subsequently validated through experiments. The aim of this work is to emphasize the significance of fluid damping loss in submerged machines. Results reveal that the damping loss exceeds 8% of the motor output power when the stator surface has indentations, and it diminishes to 3.2% of the output power when a custom wedge structure is employed to eliminate these surface indentations.","PeriodicalId":48519,"journal":{"name":"Machines","volume":"6 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/machines11121088","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This research examines how fluid damping loss affects the operation of a two-pole, 5.5 HP (4 kW) induction machine (IM) within the context of different slot opening configurations developed for downhole water pump applications. Since these motors operate with their cavities filled with fluid, the variations in fluid viscosity and density, compared to air, result in the occurrence of damping losses. Furthermore, this loss can be attributed to the motor’s stator and rotor surface geometry, as the liquid within the motor cavity moves unrestrictedly within the motor housing. This study involves the examination of the damping loss in a 24-slot IM under different stator slot indentations. The investigation utilizes computational fluid dynamics (CFD) finite element analysis (FEA) and is subsequently validated through experiments. The aim of this work is to emphasize the significance of fluid damping loss in submerged machines. Results reveal that the damping loss exceeds 8% of the motor output power when the stator surface has indentations, and it diminishes to 3.2% of the output power when a custom wedge structure is employed to eliminate these surface indentations.
研究定子槽压痕在最小化浸没式电机流体阻尼损失中的作用
本研究探讨了在为井下水泵应用开发的不同槽口配置背景下,流体阻尼损失如何影响双极 5.5 马力(4 千瓦)感应电机 (IM) 的运行。由于这些电机在腔体内充满液体的情况下运行,与空气相比,液体粘度和密度的变化会导致阻尼损失的发生。此外,这种损耗可归因于电机定子和转子表面的几何形状,因为电机腔内的液体可在电机外壳内无限制地移动。本研究对不同定子槽缩进情况下 24 槽 IM 中的阻尼损失进行了检查。研究采用了计算流体动力学 (CFD) 有限元分析 (FEA),并随后通过实验进行了验证。这项工作旨在强调浸没式机器中流体阻尼损失的重要性。研究结果表明,当定子表面有凹痕时,阻尼损失超过电机输出功率的 8%,而当采用定制楔形结构消除这些表面凹痕时,阻尼损失会减小到输出功率的 3.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Machines
Machines Multiple-
CiteScore
3.00
自引率
26.90%
发文量
1012
审稿时长
11 weeks
期刊介绍: Machines (ISSN 2075-1702) is an international, peer-reviewed journal on machinery and engineering. It publishes research articles, reviews, short communications and letters. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided. There are, in addition, unique features of this journal: *manuscripts regarding research proposals and research ideas will be particularly welcomed *electronic files or software regarding the full details of the calculation and experimental procedure - if unable to be published in a normal way - can be deposited as supplementary material Subject Areas: applications of automation, systems and control engineering, electronic engineering, mechanical engineering, computer engineering, mechatronics, robotics, industrial design, human-machine-interfaces, mechanical systems, machines and related components, machine vision, history of technology and industrial revolution, turbo machinery, machine diagnostics and prognostics (condition monitoring), machine design.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信