Solvent/non-solvent treatment as a method for surface coating of poly(ε-caprolactone) 3D-printed scaffolds with hydroxyapatite

Q3 Medicine
V. S. Bocharov, G. Dubinenko, D. Popkov, A. Popkov, S. Tverdokhlebov
{"title":"Solvent/non-solvent treatment as a method for surface coating of poly(ε-caprolactone) 3D-printed scaffolds with hydroxyapatite","authors":"V. S. Bocharov, G. Dubinenko, D. Popkov, A. Popkov, S. Tverdokhlebov","doi":"10.18019/1028-4427-2023-29-6-585-590","DOIUrl":null,"url":null,"abstract":"Introduction Over the last decades numerous new materials and techniques for bone tissue engineering have been developed. The use of bioresorbable polymeric scaffolds is one of the most promising techniques for surgical management of bone defects. However, the lack of bioactive properties of biodegradable polymers restricts the area of their application for bone tissue engineering.The aim of study was to apply solvent/non-solvent treatment to coat the surface of 3D-printed bioresorbable poly(ε-caprolactone) scaffolds with bioactive hydroxyapatite particles and report on the physicochemical properties of the resulting materials.Material and Methods In the present study, biomimetic poly(ε-caprolactone) scaffolds were 3D-printed via fused deposition modeling technology and their surface was treated with the solvent/non-solvent method for coating with bioactive particles of hydroxyapatite.Results It has been found that treatment in the mixture of toluene and ethanol is suitable for the coating of poly(ε-caprolactone) scaffolds with hydroxyapatite. The scaffolds maintain porous structure after treatment while hydroxyapatite particles form homogeneous coating. The amount of hydroxyapatite on the treated scaffolds was 5.7 ± 0.8 wt. %.Discussion The proposed method ensures a homogeneous coating of outer and inner surfaces of the poly(ε-caprolactone) scaffolds with hydroxyapatite without a significant impact on the structure of a scaffold. Fourier-transform infrared spectroscopy confirmed that the solvent/non-solvent treatment has no effect on the chemical structure of PCL scaffolds.Conclusion Coating of biomimetic 3D-printed PCL scaffolds with bioactive hydroxyapatite by the solvent/non-solvent treatment has been successfully carried out. Upon coating, scaffolds retained their shape and interconnected porous structure and adsorbed hydroxyapatite particles that were uniformly distributed on the surface of the scaffold.","PeriodicalId":37426,"journal":{"name":"Genij Ortopedii","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genij Ortopedii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18019/1028-4427-2023-29-6-585-590","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction Over the last decades numerous new materials and techniques for bone tissue engineering have been developed. The use of bioresorbable polymeric scaffolds is one of the most promising techniques for surgical management of bone defects. However, the lack of bioactive properties of biodegradable polymers restricts the area of their application for bone tissue engineering.The aim of study was to apply solvent/non-solvent treatment to coat the surface of 3D-printed bioresorbable poly(ε-caprolactone) scaffolds with bioactive hydroxyapatite particles and report on the physicochemical properties of the resulting materials.Material and Methods In the present study, biomimetic poly(ε-caprolactone) scaffolds were 3D-printed via fused deposition modeling technology and their surface was treated with the solvent/non-solvent method for coating with bioactive particles of hydroxyapatite.Results It has been found that treatment in the mixture of toluene and ethanol is suitable for the coating of poly(ε-caprolactone) scaffolds with hydroxyapatite. The scaffolds maintain porous structure after treatment while hydroxyapatite particles form homogeneous coating. The amount of hydroxyapatite on the treated scaffolds was 5.7 ± 0.8 wt. %.Discussion The proposed method ensures a homogeneous coating of outer and inner surfaces of the poly(ε-caprolactone) scaffolds with hydroxyapatite without a significant impact on the structure of a scaffold. Fourier-transform infrared spectroscopy confirmed that the solvent/non-solvent treatment has no effect on the chemical structure of PCL scaffolds.Conclusion Coating of biomimetic 3D-printed PCL scaffolds with bioactive hydroxyapatite by the solvent/non-solvent treatment has been successfully carried out. Upon coating, scaffolds retained their shape and interconnected porous structure and adsorbed hydroxyapatite particles that were uniformly distributed on the surface of the scaffold.
将溶剂/非溶剂处理作为羟基磷灰石表面涂层聚(ε-己内酯)三维打印支架的一种方法
引言 在过去的几十年里,已经开发出许多用于骨组织工程的新材料和新技术。使用生物可吸收聚合物支架是最有前途的骨缺损外科治疗技术之一。本研究旨在应用溶剂/非溶剂处理技术在三维打印的生物可吸收聚(ε-己内酯)支架表面涂覆生物活性羟基磷灰石颗粒,并报告所得材料的理化性质。材料与方法 本研究采用熔融沉积建模技术三维打印仿生物聚(ε-己内酯)支架,并用溶剂/非溶剂法处理支架表面,使其包覆生物活性羟基磷灰石颗粒。处理后的支架保持多孔结构,而羟基磷灰石颗粒则形成均匀的涂层。讨论 所提出的方法确保了羟基磷灰石在聚(ε-己内酯)支架内外表面的均匀包覆,且不会对支架结构产生重大影响。傅立叶变换红外光谱证实,溶剂/非溶剂处理对 PCL 支架的化学结构没有影响。涂层后,支架保持了其形状和相互连接的多孔结构,并吸附了均匀分布在支架表面的羟基磷灰石颗粒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Genij Ortopedii
Genij Ortopedii Medicine-Surgery
CiteScore
0.70
自引率
0.00%
发文量
104
审稿时长
12 weeks
期刊介绍: Journal’s main goal is to contribute to the development of the contemporary medical science via presentation of fundamental and applied original scientific studies to the scientific and practical medical community that would widen and deepen the understanding of the most important problems in the field of traumatology, orthopaedics, and related specialties. Our journal provides a direct open access to its content which is based on the principle that the open access option promotes global exchange of knowledge and experience. Journal’s strategy: -Development of the journal as a scientific platform for researchers, doctors, post-graduates and residents -Attraction of highly-cited authors to publish their studies -Selection of manuscripts of scientific interest for readers that will impact on journal citation index in RINC -Increase in the portion of publications submitted by foreign authors and studies conducted in association with foreign scientists; growth of citations in the journals that are included into global systems of indexing and reputable databases -Improvement of the Journal’s web site in two languages for a greater accessibility by authors and readers -Introduction of the Journal into global indexing systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信