Growth and value distribution of linear difference polynomials generated by meromorphic solutions of higher-order linear difference equations

Pub Date : 2023-12-16 DOI:10.58997/ejde.2023.84
Yi Xin Luo, Xiu Min Zheng
{"title":"Growth and value distribution of linear difference polynomials generated by meromorphic solutions of higher-order linear difference equations","authors":"Yi Xin Luo, Xiu Min Zheng","doi":"10.58997/ejde.2023.84","DOIUrl":null,"url":null,"abstract":"In this article, we investigate the relationship between growth and value distribution of meromorphic solutions for the higher-order complex linear difference equations $$ A_n(z)f(z+n)+\\dots+A_1(z)f(z+1)+A_0(z)f(z)=0 \\quad \\text{and } =F(z), $$ and for the linear difference polynomial $$ g(z)=\\alpha_n(z)f(z+n)+\\dots+\\alpha_1(z)f(z+1)+\\alpha_0(z)f(z) $$ generated by \\(f(z)\\) where \\(A_j(z)\\), \\(\\alpha_j(z)\\) (\\(j=0,1,\\ldots,n\\)), \\(F(z)\\) \\((\\not\\equiv0)\\) are meromorphic functions. We improve some previous results due to Belaidi, Chen and Zheng and others. \nFor more information see https://ejde.math.txstate.edu/Volumes/2023/84/abstr.html","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.58997/ejde.2023.84","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we investigate the relationship between growth and value distribution of meromorphic solutions for the higher-order complex linear difference equations $$ A_n(z)f(z+n)+\dots+A_1(z)f(z+1)+A_0(z)f(z)=0 \quad \text{and } =F(z), $$ and for the linear difference polynomial $$ g(z)=\alpha_n(z)f(z+n)+\dots+\alpha_1(z)f(z+1)+\alpha_0(z)f(z) $$ generated by \(f(z)\) where \(A_j(z)\), \(\alpha_j(z)\) (\(j=0,1,\ldots,n\)), \(F(z)\) \((\not\equiv0)\) are meromorphic functions. We improve some previous results due to Belaidi, Chen and Zheng and others. For more information see https://ejde.math.txstate.edu/Volumes/2023/84/abstr.html
分享
查看原文
高阶线性差分方程分形解生成的线性差分多项式的增长和值分布
本文研究了高阶复线性差分方程 $$ A_n(z)f(z+n)+\dots+A_1(z)f(z+1)+A_0(z)f(z)=0 \quad \text{and } =F(z) 的分形解的增长和值分布之间的关系、$$ 和线性差分多项式 $$ g(z)=\alpha_n(z)f(z+n)+\dots+alpha_1(z)f(z+1)+\alpha_0(z)f(z) $$ 由 \(f(z)\) 生成,其中 \(A_j(z)\),\(\alpha_j(z)\) (\(j=0,1,\ldots,n\)),\(F(z)\)\((\not\equiv0)\)都是同态函数。我们改进了贝莱迪、陈和郑等人之前的一些结果。更多信息见 https://ejde.math.txstate.edu/Volumes/2023/84/abstr.html
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信