Methane fermentation to methanol (biological gas-to-liquid process) using Methylotuvimicrobium buryatense 5GB1C

Aradhana Priyadarsini, Kaustubh Chandrakant Khaire, Lepakshi Barbora, Subhrangsu Sundar Maitra, Vijayanand Suryakant Moholkar
{"title":"Methane fermentation to methanol (biological gas-to-liquid process) using Methylotuvimicrobium buryatense 5GB1C","authors":"Aradhana Priyadarsini,&nbsp;Kaustubh Chandrakant Khaire,&nbsp;Lepakshi Barbora,&nbsp;Subhrangsu Sundar Maitra,&nbsp;Vijayanand Suryakant Moholkar","doi":"10.1002/amp2.10172","DOIUrl":null,"url":null,"abstract":"<p>Methanol is a potential alternate liquid transportation fuel for blending with gasoline. Biochemical conversion of methane to methanol is a green process for methanol production. This paper reports biochemical methanol production using type I γ-proteobacteria <i>Methylotuvimicrobium buryatense</i>, which has particular importance from the viewpoint of scalable biological gas to liquid processes for industrial application. A statistical design of experiments (at the serum bottle level) was used to optimize fermentation parameters. Enhancement in methanol accumulation was attempted using methanol dehydrogenase inhibitors. This was followed by a validation experiment run in a bioreactor at optimum conditions. At optimum conditions (pH = 7, phosphate concentration = 140 mM, temperature = 25°C) and optical density (600 nm) of 0.3, a methanol titer of 8.54 mM was achieved in 24 h (methane conversion = 20.8%). The addition of a methanol dehydrogenase inhibitor (0.5 mM Ethylenediaminetetraacetic acid) enhanced the methanol concentration to 10.37 mM. Experiments in a 3.7 L bioreactor using 1.68 bar headspace pressure and optical density (600 nm) of 0.1 yielded 23.7 mM methanol in 24 h (methane conversion = 47.8%). The methanol titers obtained using <i>M. buryatense</i> 5GB1C in 24 h fermentation are significantly higher than several previously reported methanotrophs. These results demonstrate the potential of <i>M. buryatense</i> 5GB1C for the biochemical synthesis of methanol.</p>","PeriodicalId":87290,"journal":{"name":"Journal of advanced manufacturing and processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/amp2.10172","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of advanced manufacturing and processing","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/amp2.10172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Methanol is a potential alternate liquid transportation fuel for blending with gasoline. Biochemical conversion of methane to methanol is a green process for methanol production. This paper reports biochemical methanol production using type I γ-proteobacteria Methylotuvimicrobium buryatense, which has particular importance from the viewpoint of scalable biological gas to liquid processes for industrial application. A statistical design of experiments (at the serum bottle level) was used to optimize fermentation parameters. Enhancement in methanol accumulation was attempted using methanol dehydrogenase inhibitors. This was followed by a validation experiment run in a bioreactor at optimum conditions. At optimum conditions (pH = 7, phosphate concentration = 140 mM, temperature = 25°C) and optical density (600 nm) of 0.3, a methanol titer of 8.54 mM was achieved in 24 h (methane conversion = 20.8%). The addition of a methanol dehydrogenase inhibitor (0.5 mM Ethylenediaminetetraacetic acid) enhanced the methanol concentration to 10.37 mM. Experiments in a 3.7 L bioreactor using 1.68 bar headspace pressure and optical density (600 nm) of 0.1 yielded 23.7 mM methanol in 24 h (methane conversion = 47.8%). The methanol titers obtained using M. buryatense 5GB1C in 24 h fermentation are significantly higher than several previously reported methanotrophs. These results demonstrate the potential of M. buryatense 5GB1C for the biochemical synthesis of methanol.

利用 Methylotuvimicrobium buryatense5GB1C 将甲烷发酵成甲醇(生物气变液工艺
甲醇是一种潜在的替代液体运输燃料,可与汽油混合使用。将甲烷生化转化为甲醇是一种生产甲醇的绿色工艺。本文报告了利用Ⅰ型γ-蛋白细菌埋藏甲烷微生物(Methylotuvimicrobium buryatense)生化生产甲醇的情况,这对于工业应用中可扩展的生物气变液过程具有特别重要的意义。采用统计实验设计(血清瓶水平)来优化发酵参数。使用甲醇脱氢酶抑制剂尝试提高甲醇积累。随后在生物反应器中以最佳条件进行了验证实验。在最佳条件下(pH = 7,磷酸盐浓度 = 140 mM,温度 = 25°C),光密度(600 nm)为 0.3,24 小时内甲醇滴度达到 8.54 mM(甲烷转化率 = 20.8%)。加入甲醇脱氢酶抑制剂(0.5 mM 乙二胺四乙酸)后,甲醇浓度增至 10.37 mM。在 3.7 升生物反应器中进行实验,顶空压力为 1.68 巴,光密度(600 纳米)为 0.1,24 小时后甲醇浓度为 23.7 毫摩尔(甲烷转化率 = 47.8%)。在 24 小时的发酵过程中,使用埋地芽孢杆菌 5GB1C 获得的甲醇滴度明显高于之前报道的几种甲烷营养体。这些结果证明了掩唇菌 5GB1C 生化合成甲醇的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信