On recovering the shape of a quantum tree from the spectrum of the Dirichlet boundary problem

Q3 Mathematics
O. Boyko, O. Martynyuk, V. Pivovarchik
{"title":"On recovering the shape of a quantum tree from the spectrum of the Dirichlet boundary problem","authors":"O. Boyko, O. Martynyuk, V. Pivovarchik","doi":"10.30970/ms.60.2.162-172","DOIUrl":null,"url":null,"abstract":"Spectral problems are considered generated by the Sturm-Liouville equation on equilateral trees with the Dirichlet boundary conditions at the pendant vertices and continuity and Kirchhoff's conditions at the interior vertices. It is proved that there are no co-spectral (i.e., having the same spectrum of such problem) among equilateral trees of $\\leq 8$ vertices. All co-spectral trees of $9$ vertices are presented.","PeriodicalId":37555,"journal":{"name":"Matematychni Studii","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matematychni Studii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30970/ms.60.2.162-172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Spectral problems are considered generated by the Sturm-Liouville equation on equilateral trees with the Dirichlet boundary conditions at the pendant vertices and continuity and Kirchhoff's conditions at the interior vertices. It is proved that there are no co-spectral (i.e., having the same spectrum of such problem) among equilateral trees of $\leq 8$ vertices. All co-spectral trees of $9$ vertices are presented.
论从迪里希特边界问题的频谱中恢复量子树的形状
考虑了等边树上的 Sturm-Liouville 方程所产生的谱问题,在垂顶处有 Dirichlet 边界条件,在内侧顶点处有连续性和 Kirchhoff 条件。研究证明,顶点为 $\leq 8$ 的等边树之间不存在共谱(即具有相同的问题谱)。提出了所有顶点为 $9$ 的共谱树。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Matematychni Studii
Matematychni Studii Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
38
期刊介绍: Journal is devoted to research in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信