{"title":"Fully polarized detection of mid-infrared broadband achromatic metalenses","authors":"Xingwei Liu, Guoguo Kang, Lingxue Wang","doi":"10.1117/12.3005355","DOIUrl":null,"url":null,"abstract":"Infrared polarization technology is generally applied in object detection and analysis. However, chromatic aberration restricted the development of Infrared polarization detectors. Metalenses are two-dimensional artificial electromagnetic materials to balance chromatic aberration and an ideal platform for miniaturization and integration of infrared polarization technology. In this paper, a fully polarized detection of mid-infrared achromatic metalens is designed, with a single metalens unit diameter of 30μm, a focal length of 15μm, and a working wavelength of 3μm-5μm. Through FDTD software simulation, the results show that the metalens focuses at focal plane for any polarized state light throughout the working wavelength band, with a full width at half maximum (FWHM) of the peak of less than 6&μm, achieving achromaticity. The maximum aspect ratio of the nanopillar is 15:1, meeting the requirements of electron beam lithography processing. The designed metalens achieves full-polarization detection a wider working wavelength band comparing with existing polarization detection devices, which indicates a potential application value for mid-infrared polarization detection and imaging technology.","PeriodicalId":298662,"journal":{"name":"Applied Optics and Photonics China","volume":"83 4","pages":"1296007 - 1296007-6"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Optics and Photonics China","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3005355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Infrared polarization technology is generally applied in object detection and analysis. However, chromatic aberration restricted the development of Infrared polarization detectors. Metalenses are two-dimensional artificial electromagnetic materials to balance chromatic aberration and an ideal platform for miniaturization and integration of infrared polarization technology. In this paper, a fully polarized detection of mid-infrared achromatic metalens is designed, with a single metalens unit diameter of 30μm, a focal length of 15μm, and a working wavelength of 3μm-5μm. Through FDTD software simulation, the results show that the metalens focuses at focal plane for any polarized state light throughout the working wavelength band, with a full width at half maximum (FWHM) of the peak of less than 6&μm, achieving achromaticity. The maximum aspect ratio of the nanopillar is 15:1, meeting the requirements of electron beam lithography processing. The designed metalens achieves full-polarization detection a wider working wavelength band comparing with existing polarization detection devices, which indicates a potential application value for mid-infrared polarization detection and imaging technology.