Fractional-Order Modeling of Piezoelectric Actuators with Coupled Hysteresis and Creep Effects

IF 3.6 2区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Yifan Xu, Ying Luo, Xin Luo, Yangquan Chen, Wei Liu
{"title":"Fractional-Order Modeling of Piezoelectric Actuators with Coupled Hysteresis and Creep Effects","authors":"Yifan Xu, Ying Luo, Xin Luo, Yangquan Chen, Wei Liu","doi":"10.3390/fractalfract8010003","DOIUrl":null,"url":null,"abstract":"A novel fractional-order model, incorporating coupled hysteresis and creep effects, is proposed for typical piezoelectric actuators in this study. Throughout the actuation process, various nonlinear behaviors such as piezoelectric hysteresis, non-local memory, peak transition, and creep nonlinearity are accurately characterized by the model. Offering a simpler structure and superior tracking performance compared to conventional models, the proposed fractional-order model parameters are identified using a method that integrates actuator dynamics and employs the particle swarm optimization algorithm. Experimental validation on a piezoelectric actuation platform confirms the model’s superior accuracy and simplified structure, contributing to a deeper understanding of piezoelectric actuation mechanisms and providing an efficient modeling tool for enhanced system performance.","PeriodicalId":12435,"journal":{"name":"Fractal and Fractional","volume":" 7","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractal and Fractional","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/fractalfract8010003","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

A novel fractional-order model, incorporating coupled hysteresis and creep effects, is proposed for typical piezoelectric actuators in this study. Throughout the actuation process, various nonlinear behaviors such as piezoelectric hysteresis, non-local memory, peak transition, and creep nonlinearity are accurately characterized by the model. Offering a simpler structure and superior tracking performance compared to conventional models, the proposed fractional-order model parameters are identified using a method that integrates actuator dynamics and employs the particle swarm optimization algorithm. Experimental validation on a piezoelectric actuation platform confirms the model’s superior accuracy and simplified structure, contributing to a deeper understanding of piezoelectric actuation mechanisms and providing an efficient modeling tool for enhanced system performance.
具有耦合磁滞和蠕变效应的压电致动器的分数阶建模
本研究针对典型的压电致动器提出了一种新的分数阶模型,该模型包含了耦合滞后和蠕变效应。在整个致动过程中,该模型准确地描述了压电滞后、非局部记忆、峰值转换和蠕变非线性等各种非线性行为。与传统模型相比,所提出的分数阶模型结构更简单,跟踪性能更优越,模型参数的确定采用了整合致动器动力学并使用粒子群优化算法的方法。在压电致动平台上进行的实验验证证实了该模型的卓越准确性和简化结构,有助于加深对压电致动机制的理解,并为提高系统性能提供了有效的建模工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fractal and Fractional
Fractal and Fractional MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
4.60
自引率
18.50%
发文量
632
审稿时长
11 weeks
期刊介绍: Fractal and Fractional is an international, scientific, peer-reviewed, open access journal that focuses on the study of fractals and fractional calculus, as well as their applications across various fields of science and engineering. It is published monthly online by MDPI and offers a cutting-edge platform for research papers, reviews, and short notes in this specialized area. The journal, identified by ISSN 2504-3110, encourages scientists to submit their experimental and theoretical findings in great detail, with no limits on the length of manuscripts to ensure reproducibility. A key objective is to facilitate the publication of detailed research, including experimental procedures and calculations. "Fractal and Fractional" also stands out for its unique offerings: it warmly welcomes manuscripts related to research proposals and innovative ideas, and allows for the deposition of electronic files containing detailed calculations and experimental protocols as supplementary material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信