On an Efficient Iterative Method for Fixed Points

IF 0.6 Q3 MATHEMATICS
Mukund Mohan, Abhimanyu Kumar, S. N. Roy, P. K. Parida
{"title":"On an Efficient Iterative Method for Fixed Points","authors":"Mukund Mohan, Abhimanyu Kumar, S. N. Roy, P. K. Parida","doi":"10.37256/cm.4420232755","DOIUrl":null,"url":null,"abstract":"Real-world applications depend heavily on the fixed-point solution. In this paper, we have suggested an effective iterative method for fixed points. We have first given the approximate order of convergence for this method using Taylor’s series. The radii of convergence balls for this method can then be calculated using a local convergence theorem that we then present. The semilocal convergence theorem, which determines the starting point’s accuracy, is then presented. We have created some technical lemmas and theorems to serve this purpose. In contrast to an earlier study using the same type of method for nonlinear equations, we have not used the convergence conditions on higher-order Frechet derivatives in our study of convergence. Finally, some numerical examples are provided to support the theoretical findings we made. This highlights the uniqueness of this study.","PeriodicalId":29767,"journal":{"name":"Contemporary Mathematics","volume":" 14","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contemporary Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37256/cm.4420232755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Real-world applications depend heavily on the fixed-point solution. In this paper, we have suggested an effective iterative method for fixed points. We have first given the approximate order of convergence for this method using Taylor’s series. The radii of convergence balls for this method can then be calculated using a local convergence theorem that we then present. The semilocal convergence theorem, which determines the starting point’s accuracy, is then presented. We have created some technical lemmas and theorems to serve this purpose. In contrast to an earlier study using the same type of method for nonlinear equations, we have not used the convergence conditions on higher-order Frechet derivatives in our study of convergence. Finally, some numerical examples are provided to support the theoretical findings we made. This highlights the uniqueness of this study.
关于定点的高效迭代法
现实世界的应用在很大程度上依赖于定点求解。在本文中,我们提出了一种有效的定点迭代法。我们首先利用泰勒级数给出了该方法的近似收敛阶数。然后,我们提出的局部收敛定理可以计算出该方法的收敛球半径。半局部收敛定理决定了起点的精确度。为了达到这一目的,我们创建了一些技术性的lemmas 和定理。与早先对非线性方程使用同类方法的研究不同,我们在研究收敛性时没有使用高阶弗雷谢特导数的收敛条件。最后,我们提供了一些数值示例来支持我们的理论发现。这突出了本研究的独特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
33.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信