{"title":"CLASSIFIED COVID-19 BY DENSENET121-BASED DEEP TRANSFER LEARNING FROM CT-SCAN IMAGES","authors":"Walat R. Ibrahim, M. R. Mahmood","doi":"10.25271/sjuoz.2023.11.4.1166","DOIUrl":null,"url":null,"abstract":"The COVID-19 disease, which has recently emerged and has been considered a worldwide pandemic, has had a significant impact on the lives of millions of people and has forced a substantial load on healthcare organizations. Numerous deep-learning models have been utilized for diagnosing coronaviruses from chest computed tomography (CT) images. However, in light of the limited availability of datasets on COVID-19, the pre-trained deep learning networks were used. The main objective of this research is to construct and develop an automated approach for the early detection and diagnosis of COVID-19 in thoracic CT images. This paper proposes the DDTL-COV model, a deep transfer learning model based on DenseNet121, to classify patients on CT scans as either COVID or non-COVID, utilizing weights obtained from the ImageNet dataset. Two datasets were used to train the DDTL-COV model: the SARS-CoV-2 CT-scan dataset and the COVID19-CT dataset. In the SARS-CoV-2 CT dataset, the model achieved a good accuracy of 99.6%. However, on the second dataset (COVID19-CT dataset), its performance shows an accuracy rate of 89%. These results show that the model performed better than alternative methods.","PeriodicalId":21627,"journal":{"name":"Science Journal of University of Zakho","volume":" 22","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Journal of University of Zakho","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25271/sjuoz.2023.11.4.1166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The COVID-19 disease, which has recently emerged and has been considered a worldwide pandemic, has had a significant impact on the lives of millions of people and has forced a substantial load on healthcare organizations. Numerous deep-learning models have been utilized for diagnosing coronaviruses from chest computed tomography (CT) images. However, in light of the limited availability of datasets on COVID-19, the pre-trained deep learning networks were used. The main objective of this research is to construct and develop an automated approach for the early detection and diagnosis of COVID-19 in thoracic CT images. This paper proposes the DDTL-COV model, a deep transfer learning model based on DenseNet121, to classify patients on CT scans as either COVID or non-COVID, utilizing weights obtained from the ImageNet dataset. Two datasets were used to train the DDTL-COV model: the SARS-CoV-2 CT-scan dataset and the COVID19-CT dataset. In the SARS-CoV-2 CT dataset, the model achieved a good accuracy of 99.6%. However, on the second dataset (COVID19-CT dataset), its performance shows an accuracy rate of 89%. These results show that the model performed better than alternative methods.