{"title":"Recovery of an initial temperature of a one-dimensional body from finite time-observations","authors":"Ramesh Karki, Chava Shawn, Young You","doi":"10.5206/mase/16723","DOIUrl":null,"url":null,"abstract":"Under the Dirichlet boundary setting, Aryal and Karki (2022) studied an inverse problem of recovering an initial temperature profile from known temperature measurements at a fixed location of a one-dimensional body and at linearly growing finitely many later times within a bounded interval. This paper studies the problem under the Neumann boundary conditions. That is, under this boundary setting, we suitably select a fixed location x0 on the body of length π and construct finitely many times tk, k = 1, 2, 3, . . . , n that grow linearly with k and are in [0, T] such that from the temperature measurements taken at x0 and at these n times, we recover the initial temperature profile f(x) with a desired accuracy, provided f is in a suitable subset of L2[0, π].","PeriodicalId":93797,"journal":{"name":"Mathematics in applied sciences and engineering","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics in applied sciences and engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5206/mase/16723","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Under the Dirichlet boundary setting, Aryal and Karki (2022) studied an inverse problem of recovering an initial temperature profile from known temperature measurements at a fixed location of a one-dimensional body and at linearly growing finitely many later times within a bounded interval. This paper studies the problem under the Neumann boundary conditions. That is, under this boundary setting, we suitably select a fixed location x0 on the body of length π and construct finitely many times tk, k = 1, 2, 3, . . . , n that grow linearly with k and are in [0, T] such that from the temperature measurements taken at x0 and at these n times, we recover the initial temperature profile f(x) with a desired accuracy, provided f is in a suitable subset of L2[0, π].