Finite Difference Modeling of Time Fractal Impact on Unsteady Magneto-hydrodynamic Darcy–Forchheimer Flow in Non-Newtonian Nanofluids with the q-Derivative
IF 3.6 2区 数学Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
{"title":"Finite Difference Modeling of Time Fractal Impact on Unsteady Magneto-hydrodynamic Darcy–Forchheimer Flow in Non-Newtonian Nanofluids with the q-Derivative","authors":"A. Baazeem, Y. Nawaz, M. Arif","doi":"10.3390/fractalfract8010008","DOIUrl":null,"url":null,"abstract":"This contribution addresses a fractal numerical scheme that can be employed for handling fractal time-dependent parabolic equations. The numerical scheme presented in this contribution can be used to discretize integer order and fractal derivatives in a given differential equation. Therefore, the scheme and results can be used for both cases. The proposed finite difference scheme is based on two stages. Fractal time derivatives are discretized by employing the proposed approach. For the scalar convection–diffusion equation, we derive the stability condition of the proposed fractal scheme. Using a nonlinear chemical reaction, the approach is also used to solve the Quantum Calculus model of a Williamson nanofluid’s unsteady Darcy–Forchheimer flow over flat and oscillatory sheets. The findings indicate a negative correlation between the velocity profile and the porosity parameter and inertia coefficient, with an increase in these factors resulting in a drop in the velocity profile. Additionally, the fractal scheme under consideration is being compared to the fractal Crank–Nicolson method, revealing that the proposed scheme exhibits a superior convergence speed compared to the fractal Crank–Nicolson method. Several problems involving the motion of non-Newtonian nanofluids through magnetic fields and porous media can be investigated with the help of the proposed numerical scheme. This research has implications for developing more efficient heat transfer and energy conversion devices based on nanofluids.","PeriodicalId":12435,"journal":{"name":"Fractal and Fractional","volume":"115 14","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractal and Fractional","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/fractalfract8010008","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This contribution addresses a fractal numerical scheme that can be employed for handling fractal time-dependent parabolic equations. The numerical scheme presented in this contribution can be used to discretize integer order and fractal derivatives in a given differential equation. Therefore, the scheme and results can be used for both cases. The proposed finite difference scheme is based on two stages. Fractal time derivatives are discretized by employing the proposed approach. For the scalar convection–diffusion equation, we derive the stability condition of the proposed fractal scheme. Using a nonlinear chemical reaction, the approach is also used to solve the Quantum Calculus model of a Williamson nanofluid’s unsteady Darcy–Forchheimer flow over flat and oscillatory sheets. The findings indicate a negative correlation between the velocity profile and the porosity parameter and inertia coefficient, with an increase in these factors resulting in a drop in the velocity profile. Additionally, the fractal scheme under consideration is being compared to the fractal Crank–Nicolson method, revealing that the proposed scheme exhibits a superior convergence speed compared to the fractal Crank–Nicolson method. Several problems involving the motion of non-Newtonian nanofluids through magnetic fields and porous media can be investigated with the help of the proposed numerical scheme. This research has implications for developing more efficient heat transfer and energy conversion devices based on nanofluids.
期刊介绍:
Fractal and Fractional is an international, scientific, peer-reviewed, open access journal that focuses on the study of fractals and fractional calculus, as well as their applications across various fields of science and engineering. It is published monthly online by MDPI and offers a cutting-edge platform for research papers, reviews, and short notes in this specialized area. The journal, identified by ISSN 2504-3110, encourages scientists to submit their experimental and theoretical findings in great detail, with no limits on the length of manuscripts to ensure reproducibility. A key objective is to facilitate the publication of detailed research, including experimental procedures and calculations. "Fractal and Fractional" also stands out for its unique offerings: it warmly welcomes manuscripts related to research proposals and innovative ideas, and allows for the deposition of electronic files containing detailed calculations and experimental protocols as supplementary material.